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Abstract— Stroke is the leading cause of long-term disability. 
Stroke patients can recover faster with personalized therapy 
treatments. This requires both clinical assessments and in-home 
assessments of daily activities. In this paper, we propose a daily 
activity recognition and assessment system for stroke patients. 
Our system is able to classify daily activities in real home 
environments and quantitatively evaluate upper body motions 
while preserving privacy by utilizing depth videos. Specifically, 
our system collects the depth videos and skeletal joint data of daily 
activities using a VicoVR sensor. It then recognizes and localizes 
clinically relevant actions from continuous untrimmed depth 
videos using a customized convolutional de-convolutional 
network. In addition, it assesses the extent of reach and speed 
metrics of both hands using skeletal joint data. The system has 
been tested on simulated cooking videos and real-life cooking 
videos in various kitchens with different room layouts and light 
conditions. The action recognition accuracies for simulated and 
real-life videos can reach 90.9% and 87.5%, respectively. With the 
valuable assessment feedback of our system, therapists can make 
better personalized treatments for stroke patients.  

Keywords—VicoVR, Wireless, Android, Daily Activity 
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I. INTRODUCTION 
Nearly 800,000 people each year experience strokes in the 

U.S. [1]. Moreover, about 50% report hemiparesis, or weakness 
of one side of the body afterwards [1]. Stroke patients can 
recover through rehabilitation. To make the rehabilitation 
treatment effective, it is essential for a therapist to personalize 
and refine the rehabilitation plan for each patient. This requires 
the therapist to monitor the patient’s health status and recovery 
progress continuously. Traditional rehabilitation involves 
patients performing exercises in a clinic or at home, monitored 
by a therapist [2, 3]. A patient usually receives treatment only a 
few hours per week, and evaluations of progress are typically 
only done at the beginning and end of an episode of care. As a 
result, the health information and feedback from the treatment 
are limited. High demands are placed on the therapist’s 
professional knowledge to identify the most effective and 
appropriate methods of treatment for the individual patient. 

We propose a new daily activity recognition and assessment 
system (DARAS) using a wireless depth sensor VicoVR to 
perform activity recognition and assessment in real-home 
settings. The system is comprised of three modules: a data 
logging module, an action localization module and an action 
assessment module. The data logging module was built using a 

VicoVR and an android application. It records the depth videos 
and skeletal data of a patient’s daily activities. It utilizes a 
customized convolution-deconvolution neural network [4] 
which learns the spatial features of videos, and preserves the 
temporal information and recognizes the actions from 
untrimmed videos. The action assessment module quantifies the 
motion performance using evaluation metrics based on skeletal 
data, such as hand extent of reach and movement speed.  

This paper makes three contributions: (1) To the best of our 
knowledge, we are the first to provide a video-based system to 
observe the daily activities of a stroke patient in a kitchen and 
quantitatively evaluate the upper body motions.  To reduce the 
layout size and connection overhead of the system, we utilize 
the wireless VicoVR sensor paired with a mobile device.  (2) 
The proposed system is tested on realistic video records, while 
most of the existing activity recognition approaches are trained 
and tested on datasets collected in well-controlled laboratory 
environments. (3) This work studies the effective use of 
temporal action localization of untrimmed depth videos in 
everyday stroke rehabilitation. Specifically, we customized the 
convolution-deconvolution (CDC) neural network so that it can 
be used with untrimmed depth videos as input. 

This paper is organized as follows. We survey the related 
work in Section II. We describe the implementation of the data 
logging system, the temporal action localization algorithm and 
the activity assessment in Sections III, IV and V, respectively. 
We present the experiments and results in Section VI and 
conclude our work in Section VII. 

II. RELATED WORK 

A. Daily Activity Recognition 
Recognizing daily activities is an important technology in 

pervasive computing. It benefits many real-life, human-centric 
problems such as stroke rehabilitation [5]. Various sensors have 
been investigated to capture and log human activities.  

Videos have been widely studied for activity recognition. 
With the advance of computing ability and the improvement of 
sensor techniques, various data modalities including RGB data, 
depth data and skeletal data have been introduced. To recognize 
an action from a given video, features are extracted and encoded 
to represent the input video. The encoded features are processed 
by a classifier to output the class of the action [6]. Without using 
deep learning, hand-crafted features need to be extracted. A 
large set of gradient-based descriptors have appeared for action 
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recognition. Examples are histogram of oriented gradients 
(HOG) [7], cuboid descriptor [8] and scale-invariant feature 
transform (SIFT) [9]. In recent years, with the development of 
Convolutional Neural Networks, features can be learned and 
extracted by a network [6]; the deep-learning convolutional 
features generally outperform the hand-crafted features. 
Previously, actions were manually segmented for training and 
testing. In recent years, researchers have started investigating 
temporal action localization, which detects the start and end of 
the actions in input video streams.  

B. Daily Activity Assessment 
Walking and gait measurement are vital metrics for health 

and rehabilitation assessments. However, the assessment on 
walking-related motions focuses on lower body movement only, 
whereas the quality of upper-body movement is also important 
for patients with stroke.  In [20] researchers sought to analyze 
the data using metrics otherwise immeasurable by standard in-
clinic tests, e.g., movement intensity/smoothness. One downside 
to these approaches is that it paints an incomplete picture of 
rehabilitation status.  Assessing each action category will better 
depict the rehabilitation status, and thus, is preferred by 
therapists.  

III. IMPLEMENTTION OF ACTION LOGGING MODULE 
The action logging module of our daily activity recognition 

and assessment system (DARAS) records depth and skeletal 
data from a VicoVR sensor [10]. Fig. 1 shows the module 
diagram. The main components are a VicoVR sensor and an 
android-based application. The VicoVR sensor is a Wi-Fi 
accessory that provides wireless full body and positional 
tracking to Android devices. To set up a reliable connection, the 
VicoVR broadcasts the depth data over a private wifi network. 
The data stream includes three-dimensional coordinates of 
skeletal joints, and a raw depth map with a maximum resolution 
of 640x480 at 30 frames per second [10]. The Android device 
connects to the WiFi hotspot and runs a lightweight application 
built with Unity and the Nuitrack SDK. The application records 
the depth frames at maximum possible transfer rate. The skeletal 
joints’ three-dimensional positions are recorded in 
synchronization with each corresponding frame. In this test 
implementation, data were saved to an external SD card on the 
android device, for transfer offsite, to be used with temporal 
action localization and assessment. 

IV. ACTION LOCALIZATION ON DEPTH VIDEOS 
The depth videos and skeletal joint data of daily activities 

were collected by using the action logging app. The collected 
data consisted of continuous untrimmed video. In order to 
perform real world assessments, a process of recognizing the 
specific actions and locating these actions from the untrimmed 

videos is desired. Shou et al. [4] proposed a convolutional-de-
convolutional network to recognize the actions at the frame 
level. Thus, the recognized actions can be located based on the 
per-frame action labels. 

A. Convolutional-De-Convolutional (CDC) network  
Convolution neural networks (CNN), where the dimension 

of the convolution kernel is two-dimensional, have been widely 
used in image classification, detection, segmentation and other 
tasks. For video analysis, the temporal features need to be 
preserved. However, 2D convolution cannot capture the timing 
information very well. So, 3D convolution neural networks (3D 
CNN) were proposed in [11]. Although the 3D CNN can learn 
the advanced semantic abstraction of time and space, the output 
of video time sequence length is decreased. Thus, the fine-
grained time has been lost. Shou et al. [4] proposed a 
Convolutional-De-Convolutional (CDC) network which places 
CDC filters on top of 3D ConvNets. The CDC network 
performs spatial down-sampling to extract the action semantics 
and temporal up-sampling to preserve the time information. 
Thus, it provides the prediction score at each frame, which can 
be used to locate the actions. 

B. CDC networks on depth kitchen videos 
The CDC network has been evaluated using THUMOS’ 14,  

an untrimmed RGB sport video dataset. The evaluation results 
show that the model outperforms state-of-the-art methods in 
video per-frame action labeling. Due to the privacy requirement, 
a network that can perform temporal action localization on depth 
action videos is desired in DARAS. However, the proposed 
CDC network was designed for RGB videos. So, we adopted the 
CDC network for depth videos and then fine-tuned the network 
using a new collected depth video dataset.  

Given a piece of untrimmed depth video (as shown in Fig. 
2), it is input into the CDC network, in which the 3D convolution 
neural network is used to extract semantics, and the CDC 
network is used to predict the dense frame number level scores. 
Since a depth image only has one grey channel compared to a 
RGB image, the input of the network is adjusted for depth 
videos. The time boundary of action instances is identified by 
grouping the same labels of frames. 

V. ACTION ASSESSMENT 
If therapists can track patient progress regularly, care can be 

adjusted accordingly. Quantitative measures of movement 
quality are key metrics when reporting on the functional status 
of stroke patients. Kinematic metrics in relation to joint 
displacements, analysis of hand trajectories and velocity profiles 
have been commonly used to perform quantitative measures. 
For this reason, maximum extent of reach and speed related 
metrics of hands are calculated in the DARAS system. Each 
piece of information can be used to track improvement over 
time, or indicate a decline where intervention is needed. 

 Extent of reach was calculated for each recognized action. 
Extent of reach was defined as the distance from the hand joint 
to the shoulder center, where shoulder center is the middle of the 
left and right shoulder joints. We also calculated maximum and 
mean velocities for each action.  For a healthy user, the ratio 
between mean and maximum velocity should be close to 1.0, but 

 
Fig. 1. The diagram of action logging module. 
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in the presence of movement disorders this metric could detect 
changes during the movement pattern related to various 
acceleration and deceleration periods. 

VI. EXPERIMENTS, RESULTS AND ANALYSIS 
There are three main modules of the DARAS system. The 

action data logging app, action recognition and action 
assessment. In this section, we first present the training and 
prediction results of the CDC network using a simulated kitchen 
dataset and the recognition results on real-life cooking data. 
Since there are more upper-body movements among cooking 
activities in a kitchen, kitchen environments were chosen to test 
the DARAS system. Finally, we present the assessment results 
for each recognized action category. 

A. Action recognition and localization 
a) Datasets: We collected a cooking action dataset in a 

simulated kitchen to train the action recognition and 
localization network, CDC, and collected a cooking dataset in 
real kitchens to test the prediction accuracy.  

Simulated kitchen dataset. We collected kitchen action 
videos in a simulated kitchen to train the CDC network. Though 
there are public depth-video datasets containing kitchen related 
actions, they were recorded using the Kinect sensor.  Due to the 
difference of the depth images generated from these two types 
of sensors, we decided to record a new dataset using the 
proposed DARAS app to keep consistency of depth format in 
both training and test datasets. Eleven subjects were recruited to 
perform three pre-designed action scenarios at least three times. 
In total, 100 continuous, untrimmed action video sequences 
were logged. The scenarios of continuous actions are described 
below: 

• Scenario 1: Walk into the kitchen carrying a gallon of 
milk and put it in the fridge. Get out the peanut butter and 
jelly from the overhead cabinet. Get out the knife from 
the drawer. Get out the cutting board from the cabinet 
below. Walk out of the kitchen. 

• Scenario 2: Walk into the kitchen. Get out the pasta from 
the overhead cabinet. Get out the strainer from the 
cabinet below. Rinse off the strainer in the sink and put 
it on the counter. Use the towel to dry it. Walk out. 

• Scenario 3: Walk into the kitchen. You notice that 
someone has spilled some cereal on the floor! Get the 
broom and dustpan and sweep it up. Carry the swept up 
cereal to the trashcan. Come back and sit in the chair. 

In-home kitchen dataset. We collected real-life cooking 
videos from three subjects as a test dataset. In order to test the 
ability of the CDC network in different levels of difficulty, we 
also designed two types of test sequences performed in the home 
kitchen, as well as actual cooking. 

• Level 1: Test Scenarios. The subject was asked to 
perform the test scenarios which are exactly the same as 
the actions recorded in the training set. In this level, we 
tested whether the system can recognize the actions in 
videos where only the backgrounds are different.  

• Level 2: Action Combinations. The subject was asked to 
perform actions from the test scenarios in a random 
sequence.  In this level, we tested whether the system can 
recognize the actions in randomly selected sequences 
with different backgrounds.  

• Level 3: Cooking. We recorded videos when the subject 
was cooking. One subject made salad and the other 
subjects made sandwiches for themselves. 

Based on the input from occupational therapists, each frame 
has been labeled to one of these 8 action categories which are 
background (no user/no classification), walking, sitting, 
reaching above the head, reaching forward, reaching below the 
waist, hand manipulation and sweeping. 

b) Training and prediction via simulated dataset: We 
first trained and evaluated the CDC network using the 
simulated kitchen dataset. Although the CDC filter can be 
applied to input of arbitrary size, due to the memory limitation, 
we applied a 32-frame sliding window to segment the videos 
without overlapping. We then fed each window with per-frame 
labels into the CDC network. Note that the frames in one 
window can have different action labels. The CDC network was 
initialized by the model trained on the THUMOS dataset and 
trained on the collected dataset. The stochastic gradient descent 
was applied for optimization. Following conventional settings, 
the momentum was 0.9 and the weight decay was 0.005. We 
randomly selected 90 videos as the training set and the 
remaining 10 videos as the test set. To find the suitable initial 
learning rate, we trained the network using different learning 
rates ranging from 0.0000001 to 0.01. The network was trained 
for three times at the same learning rate and the training 
iteration was 10000. The average per-frame recognition 
accuracies of different learning rates were shown in Fig. 3. 
Learning rate 0.001 generated the best per-frame accuracy. 

After the best initial learning rate was found, we initialized 
the learning rate as the optimal value 0.001, and then decreased 
by 0.1 for each 5000 iterations, resulting in a total of 30,000 
iterations. To evaluate the ability of detecting the actions, the 
per-action accuracy was calculated. To test the ability of 
localizing the actions, the per-frame accuracy was calculated. 
The recognition and localization results of the simulated dataset 
are shown in Table I. The normalized confusion matrix of per-
action recognition is shown in Fig. 4. The background category 

 
Fig. 2. A framework for positioning of temporal action recognization and 

localization. 
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was excluded for per-action accuracy performance. Reaching 
over head, sitting and hand manipulation categories show 
exceptional recognition results. 

c) Prediction via in-home dataset. The CDC model has 
been trained and tested using the simulated kitchen dataset. 
Actions can be detected and localized by grouping the per-frame 
labels. But our aim is to provide a system to recognize actions 
from real-life cooking videos. As a result, the in-home kitchen 
dataset was collected to evaluate the trained model, using actual 
cooking sequences from three participants in three different 
kitchens (Cooking). One participant prepared a salad, and two 
made sandwiches. There were many differences between the 
training videos and the real-life cooking sequences, e.g., the 
background. In order to investigate which factors affected the 
recognition accuracy, two additional types of videos were 
collected: (1) the test scenarios performed in each participant's 
kitchen (Test Scenarios), and (2) a different combination of 
actions from the test scenarios (Action Combinations).  

Table II shows the per-frame accuracies and per-action 
accuracies of Test Scenarios, Action Combinations and Cooking 
in different kitchens. For each participant, we randomly selected 
ten videos for Test Scenarios and three videos for Action 
Combinations. In addition, the cooking videos we collected last 
at least two minutes.  For action localization, the highest per-
frame accuracies of pre-designed actions and cooking actions 
were 90.7% and 84.3%, respectively. For action detection, the 
highest per-action accuracies of pre-designed actions and 
cooking actions were 90.9% and 87.5%, respectively. 
Comparing the recognition results between the simulated 
kitchen sets and the  test scenario sets, the change of background 
did not affect the recognition accuracy. However, the 
performance dropped on the action combinations tests, which 
indicates that the sequence of action could be a feature of 
recognition. The normalized confusion matrix of per-action 
recognition is shown in Fig. 5. The background category was 
excluded for per-action accuracy evaluation. The recognition 
accuracies of walking, reaching below the waist and sweeping 
categories were above 90%.  

B. Assessments 
We obtained the action segments by grouping continuous 

frames of the same per-frame labels together. The assessments 
were performed for each recognized action using joint data. 
Specifically, we use the timestamps of the first and last frames 
of an action to locate the corresponding joint data samples. With 
five trials selected for each action, we averaged the results of 
each assessment metric. The assessment outcomes of maximum 
extent of reach and speed metrics are presented in Table III.  

VII. DISCUSSION 
The aim of this study is to provide an automatic daily activity 

recognition and assessment system that can provide sufficient 
quantitative assessments of daily activities of stroke patients to 
occupational therapists so that they can design more 
personalized treatment plans to help patients recover faster. We 
are the first to design and test a depth video based model in real-
life cooking videos. We have shown the assessment results on a 
set of action categories, which has significant implications for 
clinical rehabilitation practice. We discuss each of these points 
below. We conclude with limitations and next steps for research. 

 
Fig. 3. An experiment of selecting suitable hyperparameter, learning rate. 

The network was trained on ramdomly selected 90 videos from the 
simulated dataset and tested on the rest of 10 videos for three times 
under different learning rates. The avarage per-frame accuracies 
were calculated. The accuracy was highest when the learning rate 
was 0.001. 

 
Fig. 4. Normalized confusion matrix of recognizing actions from 

simulated kitchen dataset. 

TABLE II. PER-FRAME ACCURACIES AND PER-ACTION ACCURACIES 
OF TEST SCENARIO, COMBINATION AND COOKING TEST VIDEOS FROM 

THREE DIFFERENT KITCHENS. 

 Test Scenarios Action 
Combinations Cooking 

Per 
frame 

Per 
action 

Per 
frame 

Per 
action 

Per 
frame 

Per 
action 

Kitchen 1 88.5% 87.3% 79.2% 85.7% 81.0% 80.0% 

Kitchen 2 87.9% 89.2% 85.9% 86.4% 84.1% 82.4% 

Kitchen 3 90.4% 90.1% 90.7% 90.9% 84.3% 87.5% 

TABLE I. PER-FRAME ACCURACIES AND PER-ACTION 
ACCURACIES OF TEST VIDEOS FROM SIMULATED KITCHEN DATASET 

 
Average Accuracy 

Per frame Per action 

Simulated kitchen 85.1% 92.1% 
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We demonstrated the application's capability to provide 
continuous data collection by creating the training and testing 
datasets in different kitchen environments. The CDC neural 
network was customized for recognizing and localizing actions 
from continuous depth videos. The results showed that the 
considered actions can be recognized from real-cooking videos 
efficiently. We found that the accuracy of recognizing the 
manipulation category decreased in real-kitchen test. In the 
training set, actions of rinsing off and drying the strainer were 
considered as the manipulation category, while in cooking test 
set, other actions, such as cutting vegetables, were also 
considered in the manipulation category. We also found that the 
accuracy of recognizing sitting decreased in real-kitchen test. 
Since the training set was collected in one room with chair 
position fixed and the sitting action doesn’t contain much upper-
body movement, the recognition result may decrease when 
testing in different rooms with different setting. As a result, the 
manipulation and sitting categories in the training set is not 
complex enough for recognizing these actions from real-life 
videos. We demonstrated that the quantitative assessment can be 
performed on clinically relevant action categories. The tools 
used in test scenarios were placed on the left side of the cabinets. 
From our observation, most subjects turned to open the cabinets 
using their left arms, which matches the assessment result of 
reaching above the head and reaching below the waist actions. 

This study has a few limitations. First, the Wi-Fi module of 
the Samsung tablet S3 does not have enough capability to 
receive all the depth frames sampled from the sensor. Second, 
the current system can only handle the situation with one person 
in the view. The next step for our research is to set up the system 
in kitchens with both healthy subjects and stroke patients. The 
collected data will be used to create a more comprehensive 
training set for a more robust model. In addition, we will 
investigate the assessment results for both healthy and 
pathologic subjects. At last, we will improve our algorithm to 
handle the situations with multiple persons in the view. 
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Fig. 5. Normalized confusion matrix of recognizing actions from in-home 

kitchen dataset. 

TABLE III.  QUANTITATIVELY ASSESSMENT OF CLINICALLY RELEVENT ACTIONS PERFORMED BY SUBJECTS IN THEIR KITCHENS. ASSESSMENT METRICS 
INCLUDES EXTENT OF REACH IN MILLIMETER, AND SPEED METRICS IN MILLIMETER/S. FIVE RECOGNIZED TRIALS OF EACH ACTION CATEGORY WERE SELECTED TO 

PERFORM THE ASSESSMENT. THE AVERAGE VALUES WERE CALCULATED FOR EACH METRIC. 

Actions Extentx
b Extenty Extentz Extent3d Max speed Mean speed Max/Mean 

L R L R L R L R L R L R L R 
Reaching above a 280.1 184.0 326.1 237.2 243.6 246.1 351.8 315.7 3146.5 3497.5 498.4 470.4 6.3 7.5 
Reaching forward 134.8 152.4 205.1 198.4 245.6 219.3 341.2 297.6 1841.5 1543.7 716.2 673.5 2.6 2.2 

Reaching below 222.4 226.5 248.0 194.4 291.6 216.5 344.6 295.7 2282.4 1993.4 694.8 604.0 3.1 2.8 
Manipulation 236.7 175.7 148.1 74.1 202.3 244.2 303.2 289.9 615.7 476.6 129.9 109.8 4.6 3.5 

Walking 218.5 204.4 168.4 159.4 234.8 245.7 314.2 329.1 3014.7 2970.4 985.6 997.1 3.1 3.0 
Sitting 80.1 59.3 189.5 188.4 199.0 233.7 283.2 299.2 187.6 254.6 45.2 51.7 4.6 5.2 

Sweeping 246.3 182.4 246.7 239.2 246.6 219.8 327.6 305.3 2118.7 2581.7 745.3 853.2 3.5 3.0 
 

a. Reaching above represents reaching above the head actions and reaching below represents reaching below the waist actions. b. Extent x, y, z means the hand maximum extent of reach projection in depth, lateral and 
vertical dimensions. Extent 3d means the hand maximum extent of reach in 3d space. Max/Mean represents the ratio between maximum and mean velocities. 


