
  

 

Abstract—This paper presents a sleep stage recognition 

system for Awake, rapid eye movement (REM) and non-REM 

(NREM) sleep detection. Two respiratory variability (RV) 

features are extracted from oro-nasal airflow signals provided 

in the sleep-EDF (Expanded) database. A two layer system with 

threshold comparison classifier is implemented. This system 

achieved state-of-the-art performance with simple features and 

classifiers. The average accuracy of 74.00%±5.30% and Cohen's 

kappa coefficient of 0.49±0.08 were achieved with 21 recordings. 

In the end, the measure of sleep efficiency was calculated and 

the average absolute error was 3.61%±3.66%. 

I. INTRODUCTION 

Sleep is understood as a reversible state of 
unconsciousness, characterized by a decrease of activity and 
alertness [1]. It is an essential activity for humans to maintain 
health. The lack of sleep or low quality of sleep will affect 
normal activities and cause physical and mental issues. The 
ability of monitoring sleep quality continually can help find 
sleep disorders instantly. Furthermore, some research showed 
a relation between sleep and other diseases (Parkinson's 
disease [2], Alzheimer's disease [3]). Therefore, the study of 
sleep is highly important. 

The criteria of sleep stages were first standardized in 1968 
by Allan Rechtschaffen and Anthony Kales (R&K scoring 
manual) [4]. In 2004, the AASM commissioned a revision of 
sleep scoring rules, covering not only sleep stages but also the 
scoring of arousals, respiratory events, sleep related 
movement disorders and cardiac abnormalities [5]. The 
revised scoring manual was published in 2007 [6].  

Both manuals divided sleep into two main stages: rapid 
eye movement (REM) and non-REM (NREM). Current gold 
standard sleep study for the evaluation of sleep stages is 
polysomnography (PSG). The system is usually performed at 
a sleep lab. Subjects need to connect to various physiological 
signals such as: electroencephalogram (EEG), 
electromyogram (EMG), electrooculogram (EOG), etc. A 
trained expert gives a sleep stage every 30 seconds based on 
specific patterns in the obtained signals. So the subjects 
require not only the connection of various sensors and 
electrodes but also must spend the night in a bed that is 
different from their own [7]. These settings are inconvenient 
and also may affect a subject's sleep patterns. Therefore, a 
home-use and more efficient system is required for long-term 
sleep monitoring. 

J. Y., J. K., and M. S. are with the ECE Department., University of 

Missouri         (e-mail:jyzd7@mail.missouri.edu, kellerj@missouri.edu, 

skubicm@missouri.edu).  
M. P. is with the HMI Department., University of Missouri                                           

(e-mail:popescum@missouri.edu). 

 
 

The Hydraulic Bed Sensor (MUHBS) proposed in [8] is a 
non-invasive sensor that can capture the ballistocardiograpy 
(BCG) signal. From the BCG signal, heart rate variability 
(HRV) and respiratory variability (RV) features can be 
computed. These two types of features have been applied to 
sleep analysis in many studies [9], [10],[11] and showed good 
results. Thus, the MUHBS is a good fit for sleep monitoring.  
However, because we can't get access to a sleep lab at this time, 
in order to further analyze the potential of recognizing sleep 
stages using RV parameters,  respiration signals in the 
Sleep-EDF Database (Expanded) [12] were used to examine 
features and classifiers. It is a standard on-line dataset that was 
de-identified. 

This paper presents a three stage (Awake, REM and 
NREM) classification algorithm using the respiration signal 
and derived RV features. The purpose of this research is to 
develop an algorithm that can be applied to the bed sensor data 
in the future. 

II. METHODS 

A. Dataset Description 

One of the studies in the Sleep-EDF Database (Expanded) 
was used. There are twenty healthy subjects (ten males and ten 
females; age 25-34 years). Each subject was recorded on two 
subsequent day-night periods. Subjects wore a modified 
Walkman-like cassette tape recorder described in [13] for 
about 20 hours in their homes. Several signals were recorded 
including a respiration signal obtained from an oral-nasal 
respiration air flow [13]. The oral-nasal airflow signal was 
sampled at 1 Hz. 

Sleep stages in each 30 second epoch were given by 
annotation files according to the R&K standard. These stages 
were further combined to Awake (Awake and motion time), 
REM and NREM (N1, N2, N3 and N4). Because each 20 hour 
recording contains both daily living activities and sleep, data 
during the sleep time need to be extracted. Epochs from 20 
minutes before the first non-awake stage to the last non-awake 
stage were considered as sleep time. Respiratory signals and 
detected sleep stages in this range were kept and data outside 
this range were excluded. 

B. Feature Extraction 

The respiration signals were segmented to 30 second 
epochs in order to match the given sleep stage annotations. 
Two features were extracted from each respiration signal 
segment: the respiratory rate (RR) and the max absolute 
differences of breath intervals (MADI). Compared with other 
RV features, these two showed significant differences among 
different sleep stages. 
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First, peaks of breath cycles were detected by finding local 
maxima. A 30 second respiration signal and detected peaks are 
shown in Fig. 1. For each 30 second epoch, we then defined 
the positions of the peaks as x(n), where n is a series number 
from 1 to the number of peaks (N). The breath intervals are: 

 I(n) x(n 1) x(n) n 1, 2, ...N-1     (1) 

 
Figure 1.  A 30 sec. respiration signal with detected peaks labeled with red 

circles 

The equation for  RR is: 

  
N

n 1

60 1

N I(n)

  (2) 

The MADI is defined as: 

 1 n N 2max I(n 1) I(n)      (3) 

C. Data Selection 

After analyzing all breath intervals of each recording, we 
found that some recordings are really noisy. Fig. 2 displays the 
histogram of breath intervals of one such recording. The 
breath intervals of this recording gather around 2 second 
which results in 30 breaths/minutes. 

According to [14], a healthy adult breathes 12 - 15 times 
per minute at rest. So these recordings were considered as 
noisy data. In order to keep the whole dataset reliable, a data 
selection process was implemented to detect and remove these 
noisy recordings from the database. The selection rule is: for 
each recording, if the proportion of breath intervals larger than 
6 seconds or smaller than 3 seconds is bigger than 10%, then 
this is a noisy recording. 

This range selected the recordings where the majority of 
the respiratory rates are in the range of 10 to 20 times per 
minute, which allows some variability. After selection, 21 
recordings were kept in the dataset. The structure of these 
recordings are listed in Table I. 

 

Figure 2.  Histogram of breath intervals of one recording. Most of the 

intervals are 2 seconds 

 

TABLE I.  STRUCTURE OF THE DATABASE 

Total number of epochs 20071 

Awake (%) 9.90±3.90 

REM (%) 20.48±3.91 

NREM (%) 69.62±6.18 

Mean±SD 

 

III. SLEEP STAGE RECOGNITION SYSTEM 

The system consists of two layers. The first layer was the 
Awake&REM detection. The second layer was to separate 
REM and Awake based on the outputs from layer one. 

A. Layer 1 : Awake&REM detection 

The RR feature was employed in the first layer. The RR 
series of all epochs was first detrended to remove the 
nonlinear trend. The detrended RR was calculated by 
subtracting the smoothed feature from the original one. The 
smoothed feature was obtained by applying RLOWESS [15] 
with a 30 point sliding window. 

Thresholds were then set as the 3rd quartile value plus the 
standard deviation and the 1st quartile value minus the 
standard deviation. All epochs that had the detrended RR 
value out of range of these two thresholds were classified as 
Awake&REM class (detected target class). Fig. 3 displays the 
original RR, the detrended RR with thresholds and the ground 
truth with detected epochs. 

In addition, two rules based on common sense and theory 
were applied to improve the performance. They are:  

1) If two successive detected epochs were less than or 
equal to 15 epochs apart, then all epochs between these two 
epochs were also assigned as the target class. 

2) Because sleep always starts with Awake, if the first 
detected Awake&REM epoch was not the first epoch in the 
recording, the epochs from the first epoch to the position of the 
first detected epoch were all assigned as the target class. 

The role of the first rule was to connect epochs detected by 
the thresholds, because a REM period usually lasts for a long 
time (30 minutes) [16]. During these long periods, respiration 
activity would not always be irregular, so the connection 
scheme will link these periods to irregular periods to form a 
complete block. Rule 2 allows the system to get started 
correctly. Fig. 4 gives the comparison of the original detected 
results and the post processed results. The results demonstrate 
that by connecting the scattered epochs, most of the REM and 
Awake stages were detected. 

B. Layer 2: Awake vs. REM 

The second layer aimed to separate REM and Awake 
stages. It was hard to separate these two stages because they 
both have irregular respiration. 

 

 



  

 

Figure 3.  Process of the first layer. (a) The orginal RR, (b) The detrended 

RR. Two lines indicate two thresholds, (c) ground truth  

 

Figure 4.  An example of the original detected results and the post processed 

results. (a) ground truth, (b) detected epochs before post-processing, (c) 

detected epochs after post-processing. 

One assumption is that if a person woke up in the middle of 
the night suddenly, there might be a more severe fluctuation in 
respiration, for example, a suddenly shortened breath interval 
or a deeper breath. This was the reason why the MADI was 
selected as the feature for this layer. This feature measured the 
biggest change of the breath intervals in each epoch.  

However the feature could only separate part of Awake 
from REM. So two other rules were applied on the outputs of 
the first layer in order to improve the results. So there were 
totally three rules: 

1) If the detected Awake&REM epochs in the first layer 
occur in the first 60 minutes (120 epochs), these epochs were 
assigned as Awake. 

2) If the duration of a block of continuous detected 
Awake&REM epochs in the first layer was less than 5 minutes 
(10 epochs), these epochs were assigned as Awake. 

3) If the MADI was larger than 4, the epoch was assigned 
as Awake. 

The first two rules were set according to sleep theory: 1) 
the first REM period usually occurs about 70 minutes after 
sleep onset [16]; 2) the first REM period is short, but the 
duration of REM period after that is approximately 30 minutes. 
The threshold for MADI was picked based on the observation 
of the data. 

IV. RESULTS 

For the evaluation of the classification performance, two 
measures were computed on each recording. They were: 

accuracy and Cohen's kappa coefficient. The kappa coefficient 
measures the inter-rater agreement of two observers. Its 
advantage is a  lower sensitivity to an imbalanced dataset. In 
addition, the sensitivity and specificity were also used to 
evaluate the performance of the first layer. 

The performance measures of the first layer before and 
after post-processing are shown in Table II. The result shows 
only 24.45% Awake&REM epochs were successfully 
detected without post-processing. After post-processing, the 
sensitivity increased about 50% while only losing 16% of the 
specificity. The post-processing was thus shown to be 
efficient.  

The three class confusion matrix of total 21 recordings is 
displayed in table III. Accuracy is 74.00%±5.30% and Kappa  

TABLE II.  PERFORMANCE MESURES OF THE FIRST LAYER BEFORE AND 

AFTER POST-PROCESSING 

 Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

kappa 

Before  24.45±3.36 94.06±1.96 72.79±4.91 0.22±0.05 

After  76.08±9.83 78.05±6.94 77.05±5.30  0.49±0.1 

TABLE III.  CONFUSION MATRIX OF ALL RECORDINGS 

         Actual 

Output    

NREM REM  Awake 

NREM 10826 1065 408 

REM 2405 2960 521 

Awake 740 83 1030 

TABLE IV.  COMPARISON OF PERFORMANCE WITH PREVIOUS WORKS 

Author/year Features Accuracy 

(%) 

kappa 

Long, 2014[9] 27 RV 77.10±7.60 0.48±0.17 

Xiao, 2013[10] 41 HRV 72.58±6.70 0.46±0.10 

Mendez, 2010 [11] 17 HRV 71.95±7.47 0.42±0.10 

Proposed method  2 RV 74.00±5.30  0.49±0.08 

 

Figure 5.  An example outputs of one recording  (k=0.67). (a) Ground truth, 

(b) output 

is 0.49±0.08. In addition, the sleep efficiency (Seff) was 
estimated using the results of the classification and compared 
to the true values. Sleep efficiency is defined as: 

 
effS total sleep time / time in bed   (4) 

 

 

 



  

The sleep efficiency thus estimated had 3.61%±3.66%  
absolute error for all 21 recordings. 

Fig.5 displays the outputs of one recording with the kappa 
coefficient of 0.67. Except the epochs around 400, most of 
other epochs were assigned to the right class with minor 
errors. 

Table IV shows the comparison between performance of 
the proposed method and previous work using different data. 

V. DISCUSSION 

Our proposed method shows state-of-the-art result 
performance for Awake/REM/NREM classification. Most 
importantly only two features and the simple threshold 
comparison classifier was used. While we tested more 
sophisticated classifiers such as Support Vector Machines and 
Random Forests, we found that these features could be used in 
a simple and fast rule based system to obtain better 
classification results. Hence, we opted for this simple 
approach. 

The detrended RR feature successfully detected rough 
positions of Awake and REM periods. By combining with two 
additional rules as post-processing, sensitivity increased from 
24.45% to 76.08%. It demonstrated that commonsense rules, 
based on sleep theory, do improve results when Awake and 
REM are placed in the same class.  

The Awake and REM separation in the second layer is a 
hard problem, because these two stages have similar 
physiological indexes including respiratory activities. The 
results also showed such situation. The MADI feature and two 
additional rules only separated about half of Awake from 
REM in the second layer. However, the error of sleep 
efficiency of 3.61% was promising. Sleep efficiency is one of 
the key measures to evaluate sleep quality. Thus, the proposed 
method can be used to reflect sleep quality. 

 From the presented results, we conclude that the proposed 
algorithm is efficient for sleep stage recognition. However, 
because sleep can be very different among individuals and 
different sensors also may introduce various types of noise, 
more experiments are needed to evaluate the robustness of the 
approach. Our next step will be collecting data using our bed 
sensor in order to achieve the goal of long-term non-invasive 
sleep monitoring. Furthermore, by combining HRV and body 
movement features extracted from the bed sensor, the 
classification results can be improved over current results, 
especially the detection rate of the Awake stage. 

VI. CONCLUSION 

A three stage (Awake, REM and NREM) classification 
system was implemented with 21 recordings from the 
Sleep-EDF database. A two-layer classification system was 
developed with only two RV features and the threshold 

comparison classifier. Some rules were added based on 
general sleep theories. The method achieved the accuracy of 
74.00%±5.30% and Kappa of 0.49±0.08. The error of sleep 
efficiency was 3.61%±3.66%. This approach is comparable 
with previous work using simpler features. We conclude the 
proposed method has great potential for application to the bed 
sensor data in the future. 
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