
  

  

Abstract— In this paper, we describe two longitudinal studies 
in which fall detection sensor technology was tested in the homes 
of older adults. The first study tested Doppler radar, a two-
webcam system, and a depth camera system in ten apartments 
for two years. This continuous data collection allowed us to 
investigate the real-world setting of target users and compare the 
advantages and limitations of each sensor modality. Based on 
this study, the depth camera was chosen for a current ongoing 
study in which depth camera systems have been installed in 94 
additional older adult apartments. We include a discussion of the 
different sensor systems, the pros and cons of each, and results 
of the fall detection and false alarms in the older adult homes. 

I. INTRODUCTION 

Falls continue to be a major challenge for older adults and 
are often the reason they leave their home for assisted living 
or skilled nursing home facilities. In the U.S., about one out of 
every three older adults (aged 65 and above) falls each year 
[1].  These falls may result in serious injuries which further 
contribute to loss of mobility and independence, especially if 
the faller is not found promptly [1-2]. Older adults who live 
alone are especially prone to delayed help in the case of falls. 
An automated fall detection and alert system would provide 
needed assurance and timely help to the older adult. 

Because of the importance of fall detection, there has been 
much work using a variety of approaches. For example, 
commercial pendants contain a call button that seniors can 
press when in trouble. However, many seniors refuse to wear 
the pendants; others will not press the button even if they fall, 
or they may be unable to press the button as a result of the fall. 
Other commercial systems are available which use 
accelerometers to automatically detect falls, either 
incorporated into the pendant or worn elsewhere. These, too, 
have shown problems [3]. One study testing a commercial 
system showed the difference between lab results and results 
in real world settings [4]. Although the company reported 
results of 94% sensitivity and 92% specificity, an independent 
study with 18 participants for 4 months showed much worse 
results. Of the 84 fall alarms reported, 83 were false alarms, 
and three actual falls were missed. Eight additional falls 
occurred when participants were not wearing the device; four 
of these occurred during charging of the device. Participants 
also had difficulties in managing the devices. Only eight 
participants completed the 4 months. Recent research has 
investigated new methods for wearable fall detection sensors 
[5, 6], but these, too, will have to overcome challenges of 
robust fall detection in the real world. 
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Non-wearable sensing embedded in the environment has 
also been studied for fall detection. These systems eliminate 
compliance issues because they are always on; there is no need 
to charge devices or remember to put something on.  Various 
sensing modalities have been investigated, including camera 
[7-9], radar [10-12], depth camera [13-15], depth camera with 
acoustic sensing [16], and depth camera with wearable 
accelerometer [17]. Many of these studies report very good 
results; however, most have limited datasets for testing which 
have been compiled with young healthy volunteer participants.  

The work of others, as well as our own longitudinal studies 
have shown that falls performed by younger adults are not the 
same as older adult falls, especially those which happen in 
natural home environments. Studies confirm this with 
accelerometer data; younger participants tend to compensate 
for the falls in a way that older adults cannot [18, 19]. Our own 
studies with non-wearable sensors illustrate this too. Older 
adults that are at risk of falling walk differently, use different 
standing postures, and may have slower downward movement 
with multiple hit points as they try to grab onto something 
(e.g., furniture) to break the fall. Thus, collecting data with real 
older adults in their homes is important to better understand 
the challenges of automated fall detection. 

In this paper, we discuss two longitudinal studies 
performed with older adults in their homes. Section II reviews 
a two-year study in ten apartments, testing radar, webcam, and 
depth sensing. A discussion is included on the advantages and 
limitations of each. Section III describes an ongoing study in 
94 homes using depth sensing for fall detection. We present 
results on actual older adult falls detected as well as false 
alarms. A discussion of the remaining challenges is included 
with suggestions for future work. We conclude in Section IV. 

II. COMPARING RADAR, WEBCAMS, AND DEPTH SENSING 

A. Study Overview 
Three different fall detection systems were installed in the 

apartments of older adults, which included Doppler radar, a 2-
webcam system, and a depth camera system (Microsoft 
Kinect). Participants were recruited from TigerPlace, an aging 
in place senior housing site in Columbia, MO. The IRB-
approved protocol called for two years of continuous data 
collection in 10 apartments. Some participants withdrew from 
the study due to leaving TigerPlace, and others were recruited. 
The total number of participants over the two years was 19 
older adults (9 men, 10 women) in 16 apartments; 3 apartments 
had couples. The average age at installation was 87. 
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The fall detection study was part of a larger study 
investigating automated methods of fall risk assessment using 
the same embedded sensing systems [20], designed to be as 
unobtrusive as possible (Fig. 1). Stunt actors visited the 
apartments each month to perform falls that were used for 
training and testing fall detection algorithms. To make the 
stunt falls as realistic as possible, stunt actors were trained in 
21 different types of falls typical of seniors, including from 
standing, sitting, and reclining positions [21]. Stunt actors also 
followed a protocol designed to stress the detection system by 
including movements that might trigger a fall detection, such 
as bending over to pick up objects on the floor and stretching 
on the floor. One of the older adult participants fell several 
times during this period; these naturally occurring falls were 
also included. The study captured an accurate representation 
of the noisy home environment for older adults and thus, 
serves as an exceptional testbed for investigating false alarms. 

B. Fall Detection Methods 
Our fall detection methods have been reported elsewhere. 

Here, we offer a brief overview. The Doppler radar system 
consisted of a commercially available pulse-Doppler range 
control radar, modified for access to the analog signal [22]. 
The radar sends out pulses with a carrier frequency of 5.8 GHz, 
at a duty cycle of 40% and a repetition rate of 10MHz.  The 
reflected radar return was digitized by sampling at 960 Hz, 
using a commercial data acquisition unit. Radar units were first 
deployed on the ground as in Fig. 1(a) in order to capture gait 
as well as falls. Later, 3 radar units were installed in the attic 
looking down. The Doppler radar system captures motion in 
the direction towards and away from the sensor. The attic 
sensor was found to provide better detection of the downward 
motion of falls. The detection methods consist of a prescreener 
based on wavelet coefficients at dyadic scale 4 to locate 
possible falls and a second phase using 6 levels of a Discrete 
Stationary Wavelet Transform and a nearest neighbor 
classifier to detect falls [22]. 

The webcam system used two inexpensive webcams at 
640x480 resolution installed on orthogonal walls [7]. 
Silhouettes of moving bodies were extracted from each view 
using background subtraction methods, and then projected into 
the 3D voxel space with a 1-inch cubed voxel (2.54cm cubed) 
[23]. The voxels of the intersection formed a 3D model of a 
person in the scene. Falls were detected by tracking a person 
as being upright, on the ground, or in-between and then 
computing features to describe a transition to on-the-ground, 
e.g., speed and acceleration [7]. A set of fuzzy rules generated 
a fall confidence. Due to the computational load of extracting 
silhouettes, building a 3D voxel model, and performing fall 
detection, the method was implemented on a GPU to provide 
real time operation at 5 frames per second. 

The Kinect depth camera was used for the third method. 
Due to the size of the apartments monitored, the depth images 
were used directly; skeletal data was not accurate or stable at 
the extended distance (7-10 m). Similar to the webcam system, 
background subtraction was used to extract and track moving 
bodies in depth images. The system first detects on the ground 
events and then uses an ensemble of decision trees and features 
to generate a confidence that a fall occurred. The system 
operates at 7.5 frames per second. See also [24] for details. 

C. Results 
Each of the sensing methods was evaluated separately to 

assess performance in naturalistic older adult homes. We 
present results of an attic radar above the living room in one 
apartment over a 10-day period, in which 13 actual falls 
occurred by the older adult participant, a 74-year-old women 
with a large cat that also lived in the apartment. The system 
was trained with stunt fall data collected by a radar unit located 
in the attic above the bathroom area. At a 90% fall detection 
rate, the system generates 1 false alarm per day (a rate of 30 
false alarms per month). At 100% detection, the system 
generates 16 false alarms over the 10-day period (a rate of 49 
false alarms per month). Among the false alarms, 11 were from 
non-human activity, e.g., the cat, 1 from random noise, 2 from 
adjusting the height of a chair, 1 from standing up quickly, and 
1 from bending over to pick up an object. See also [22]. 

The webcam system was tested on a dataset of three 
months of data from ten apartments (300 days) with 162 falls 
total from the stunt actors. Of these falls, 90% were detected 
with a false alarm rate of 15 per month. For a 95% detection 
rate, the false alarm rate was 25 per month. These represent 
very naturalistic scenes with pets, cleaning staff, clinical staff, 
and other visitors entering at unpredictable times, which 
provides a thorough test in realistic living environments. 

The Kinect depth sensing system had the most rigorous 
test. Results are outlined in detail in [24] for 13 apartments 
with 16 participants, 3,339 days of continuous data, and 454 
falls (445 stunt falls and 9 naturally occurring falls from four 
older adults). Several apartments had pets; all had cleaning 
staff, clinical staff and other visitors that entered the 
apartments. For falls that occurred within 4 m of the sensor and 
were not significantly occluded, the detection rates, at 1 false 
alarm per month, are 98% for standing falls, 70% for sitting 
falls, and 71% for falls from a reclining position. For falls 
occurring more than 4 m from the sensor, the detection rates at 
1 false alarm per month are 79% for standing falls, 58% for 
sitting falls, and 5% for reclining falls. 

 

 
Fig. 1. In-home fall detection sensors. (a) Doppler radar installed in a 
wooden box; insert photo shows the contents. The attic radar system 
contained the same components, (b) webcam (circled in red) and 
Microsoft Kinect (circled in black) installed on a wall above the front 
door with a view of the main living area; these had wired connections 
to a computer located in the cabinet above the refrigerator (on the left) 

(a) 

(b) 



  

Of the 9 naturally occurring falls, 7 were standing falls and 
2 were sitting falls. All but one of the standing falls (including 
three greater than 4m from the sensor) would have been 
detected at a false alarm rate of 4.6 per month. The exception 
was a fall that occurred at 5.5m in front of a window; sunlight 
blocked the depth measurements. The two sitting falls were not 
detected due to significant occlusion. 

D. Discussion 
Each of the fall detection modalities has advantages and 

limitations. We first discuss vision-based vs. non-vision-based 
(radar). Both vision-based systems suffer from potential 
occlusion problems, whereas the radar system can sense 
through structural elements. The vision-based systems have 
lighting issues; the webcam system is especially affected by 
changing lighting conditions. In contrast, the radar system is 
not affected by lighting level or lighting changes. However, 
the vision systems offer a view of what happened leading up 
to the fall and also provide a mechanism for confirming that a 
fall really did occur. The radar system does not provide this 
capability. The radar system had the worst performance but 
also had the least amount of training data (from the attic). More 
training data should improve performance. The Doppler radar 
method detects motion in the direction towards or away from 
the sensor. Thus, a radar device mounted on the ceiling or attic 
is more effective at detecting downward motion.  

Between the webcam and depth sensing systems, the 
webcam system requires considerably more computational 
power and calibration of the two-camera system, whereas the 
Kinect depth camera is a single device that can be used with a 
small computer and can more easily be run at a higher frame 
rate. Although both systems can be affected by lighting, the 
webcam system provides more challenges, as it is particularly 
affected by sudden changes in lighting, e.g., when someone 
turns on a light. Additional time is required for the system to 
re-acquire a background model so that moving people can be 
segmented. The webcam system also needs adequate visible 
light or could be used in the dark if infrared emitters were 
added. The depth sensor can sense in the dark without added 
emitters and is not affected by sudden lighting changes. 
However, it can be affected by too much natural sunlight.  

As a result of this study, we decided to use the depth sensor 
going forward with future studies. Although occlusions are 
still a potential problem, the ability to see what happened 
leading up to the fall and the ability to confirm that a fall really 
happened was deemed more useful. Due to the variability in 
the older adult falls, including slow-moving falls, we 
concluded that the fall detection threshold may have to be set 
very low for some individuals with high fall risk, even if false 
alarms result. We incorporated a live fall detection system with 
fall alerts that include a link to a depth video of the fall [25]. 
These can be delivered via email or text message. The link 
allows the receiver to easily view the depth video to determine 
whether this is a real fall or a false alarm. Several examples of 
these short depth videos of real older adult falls  can be viewed 
at https://www.youtube.com/watch?v=TFB7YOUmHho. 

III. ONGOING LONGITUDINAL STUDY WITH DEPTH SENSING 

A.  Study Overview 
As part of a longitudinal study to investigate the use of in-

home sensors for early detection of health changes, depth 

sensors (Microsoft Kinect) were installed in additional senior 
apartments. These ongoing, IRB-approved studies are run with 
rolling enrollments; as participants drop out due to death or 
leaving the housing site, new participants are recruited. In 
total, 43 Kinect systems have been installed in TigerPlace 
apartments, and 67 Kinect systems in other senior housing.  

B. TigerPlace Case Study Results 
We first present results from one TigerPlace apartment 

with a separate bedroom. The Kinect fall detection system was 
mounted on the wall in the main living area as shown in Fig. 
1(b). The resident is a single woman, aged 75 who lives with 
a cat. She has frequent visitors, many of whom are staff. 
Results are reported over 601 days. During this time, fall alerts 
were live with links to short depth video clips of the detected 
falls. During the 601 days, 217 fall alerts were generated; 142 
were actual falls and 75 were false alarms. The fall videos were 
reviewed to examine the source of the false alarms, shown in 
Table I. Because of her frequent falls, the fall confidence 
threshold was changed after 109 days to avoid missing any 
falls. The higher threshold resulted in 29 detected falls with a 
false alarm rate of 2.4/month. The lower threshold resulted in 
113 detected falls with a false alarm rate of 4/month.  

The resident uses a walker and sometimes a wheelchair, 
and sometimes transitions herself between a wheelchair and 
other furniture in the home. Due to a neurological condition, 
she frequently falls but often grabs onto something to slow 
herself down and soften the fall. This is also evidenced by the 
fact that she has not broken any bones in spite of many falls. 

TABLE I.  CASE STUDY FALSE ALARMS FROM DEPTH SENSING 

Days T** 
False Alarm Source in Case Study 

Person 
on floor 

Object 
on floor Pet Other Total FA 

rate* 

109 38% 4 4 0 1 9 2.4 

492 18% 15 18 12 21 66 4.0 

* False alarm rate per month per person 

** Fall confidence threshold used for fall detection 
 

TABLE II.  OTHER HOUSING  FALSE ALARMS FROM DEPTH SENSING 

Days 
False Alarm Source in Other Senior Housing 

Linen Res** Visitors Pet Other Total FA 
rate* 

10707 230 83 101 70 19 503 1.4 

* False alarm rate per month per person 

** Resident of the apartment 

 

C. Composite Results in Other Senior Housing 
The senior apartments outside of TigerPlace are mostly 

assisted living studio apartments, with a single room that 
contains the bed and sitting area. We present composite results 
from 67 apartments (all residents living alone), with 52 
females and 15 males. The period covered about 7 months for 
a total of 10,707 days (about 352 months). Over this period, 
570 fall alerts were generated. Of these, 67 were actual older 
adult falls and 503 were false alarms for a false alarm rate of 
1.4 per month per person. Table II shows the source of the false 
alarms, again determined by reviewing the fall depth videos. 
Many of the false alarms were caused by linens being thrown 
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on the floor from the bed. Pets and visitors continue to be a 
significant source of false alarms.  

D. Discussion 
The results illustrate the challenges in detecting falls in 

unstructured home environments. First, older adults fall in 
unpredictable ways and often much differently than the 
younger adults used to collect training data for fall detection 
systems. One of the major challenges observed in our studies 
is the slow fall, in which older adults try to break their fall by 
hanging on to furniture or walkers. Thus, the speed and 
acceleration is less than observed in training data.  

At the same time, there are also unpredictable events of 
visitors, pets, and items on the floor. Pets jump off furniture. 
Child visitors “throw” themselves onto the floor and adult 
visitors sit or lie down on the floor. Because these can be 
difficult to distinguish from older adult falls, it is helpful to 
have the fall alerts with links to short depth videos showing the 
detected fall. In this way, care providers can quickly and easily 
click on the link to observe whether a real fall has occurred.  

In addition, linens and other items are thrown on the floor. 
As shown in Table II, linens contributed to almost half of the 
false alarms when the depth camera was placed in the same 
room as the bed. There is an opportunity here to distinguish 
inanimate objects from people, to greatly reduce the false 
alarm rate, e.g., by fusing depth images with other sensor 
modalities such as thermal imaging. In general, combining 
sensing modalities may be necessary to improve performance.  

The bathroom area remains an open challenge. It is likely 
that a non-vision-based system like radar will be required due 
to occlusions. More work on radar fall detection (and more 
training data) may improve the performance for this setting. 

IV. CONCLUSIONS 

We described two longitudinal studies on fall detection in 
the homes of older adults. The first tested Doppler radar, a two-
webcam system that used silhouettes, and a depth sensing 
system. The depth system was then selected for testing in a 
larger study in different types of older adult apartments. Great 
progress has been made on non-wearable fall detection. 
However, our experience shows that robust fall detection 
without false alarms still has significant challenges. Testing 
these systems in real home environments with older adults is 
essential for measuring realistic performance. 
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