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Abstract
This study explored using big data, totaling 66 terabytes over 10 years, 
captured from sensor systems installed in independent living apartments 
to predict falls from pre-fall changes in residents’ Kinect-recorded gait 
parameters. Over a period of 3 to 48 months, we analyzed gait parameters 
continuously collected for residents who actually fell (n = 13) and those 
who did not fall (n = 10). We analyzed associations between participants’ fall 
events (n = 69) and pre-fall changes in in-home gait speed and stride length 
(n = 2,070). Preliminary results indicate that a cumulative change in speed 
over time is associated with the probability of a fall (p < .0001). The odds 
of a resident falling within 3 weeks after a cumulative change of 2.54 cm/s is 
4.22 times the odds of a resident falling within 3 weeks after no change in 
in-home gait speed. Results demonstrate using sensors to measure in-home 
gait parameters associated with the occurrence of future falls.
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The ability of nurses to detect changes in health conditions, functional 
decline, or increasing fall risk in aging residents who live in the community 
is a critical part of patient assessment. Historically, these types of assess-
ments have included direct observation, surveys, and interviews to evaluate a 
resident’s condition change or declining functional status (Rubenstein et al., 
2004; Tideiksarr, 2003; Tinetti, 2003). Although many of these assessments 
used by nurses have been validated and are reliable sources of data for trend-
ing status changes in community-dwelling residents, they require a health 
care provider to be present for the data collection and evaluation. Cutting 
edge models of care using sensor technology that collects data 24/7 and 
results in many terabytes of data over several years are being incorporated 
into residents’ living quarters in elder living communities to facilitate faster 
decisions about nursing care needed and to make selected living environ-
ments safe for older people (Dawadi, Cook, & Schmitter-Edgecombe, 2014; 
Reeder et  al., 2013; Skubic, Alexander, Popescu, Rantz, & Keller, 2009). 
However, because of their age, frail state, and often times declining health, 
these residents may require enhanced nursing care coordination. Sensor tech-
nology is being used to detect changes in a resident’s condition or an episode 
of functional decline sooner, enhancing nurses’ ability to react to episodic 
condition changes, perform a resident assessment more quickly, and possibly 
suggest treatment options sooner (Rantz et al., 2013). We describe prediction 
of older adult fall risk using big data sets captured over many years by mul-
tiple sensing devices and nurse care coordinators’ use of these data in the care 
of these adults.

Fall Detection and Activity Monitoring Using 
Sensor Technology

Falls are the primary cause of injury in older adults, occurring at an annual rate 
of 33% in persons above the age of 65 years (Centers for Disease Control and 
Prevention [CDC], 2015a). Early and efficient identification of older adults at 
risk for falls could prevent costly injuries and loss of quality of life. The extant 
literature shows that people who walk slower with shorter strides are more 
likely to fall (Barak, Wagenaar, & Holt, 2006; Quach et al., 2011), but older 
adults do not receive regular gait evaluations. In an effort to increase fall risk 
screening efforts, the CDC developed the Stopping Elderly Accidents, Deaths, 
and Injuries (STEADI) toolkit for health care providers to use in clinical prac-
tice (CDC, 2015b). Toolkit materials instruct providers how to conduct spe-
cific tests known to predict fall risk, such as the Timed Up and Go, 30-s chair 
stand, and four-stage balance tests (Guralnik et  al., 1994; Jones, Rikli, & 
Beam, 1999; Podsiadlo & Richardson, 1991). However, providers face time 
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limitations, competing demands, and reimbursement constraints in evaluating 
and managing fall risk among their patients (Tinetti, Gordon, Sogolow, Lapin, 
& Bradley, 2006). Moreover, most falls go unreported, further limiting oppor-
tunities for providers to assess risk and recommend preventive measures 
(Shumway-Cook et al., 2009).

One solution to the problem of underreported falls and existing gaps in fall 
risk screening among older adults is in-home monitoring systems that pas-
sively and continuously capture gait parameters from which fall risk can be 
predicted (Barak et al., 2006). Until recently, human motion analysis using 
video required the attachment of body markers, as with the Vicon system or 
the use of multiple cameras, and intensive computations to extract enough 
silhouettes to fit a skeletal model (Stone & Skubic, 2011). In 2011, the Center 
for Eldercare and Rehabilitation Technology research team at the University 
of Missouri (MU) developed a methodology to obtain measurements of tem-
poral and spatial gait parameters from the Microsoft Kinect sensor. Using 
both a Vicon motion capture system and a web-camera-based system to pro-
vide ground truth, researchers validated Kinect-recorded three-dimensional 
(3D) depth images against standardized gait and balance measures. In addi-
tion, fall-detection algorithms were initially developed with stunt actors per-
forming falls in the laboratory and further validated using stunt actors in the 
apartments of residents of TigerPlace, an independent living community and 
MU research partner. Following iterative refinement of the fall-detection 
algorithms, the Kinect fall-detection system has been installed in a total of 39 
TigerPlace apartments for continuous automated monitoring of gait parame-
ters for fall risk as well as automated fall detection in the apartments.

As interest in smart home technologies burgeons, other applications of 
Kinect sensors are being tested (Reeder et al., 2013). Ejupi and colleagues 
(2016) used the Kinect in a prospective study of fall events in community-
dwelling older adults. They demonstrated that upper extremity reaction time 
was significantly slower for older adults who experienced a fall in the sub-
sequent 6 months compared with those with no fall events. Ejupi et al. envi-
sioned the system could eventually be installed in clinical and home settings 
for ongoing monitoring of fall risk. In other research, a Kinect sensor was 
paired with inertial sensors attached to eating utensils for the purpose of 
tracking movements of interest to therapists (Hondori, Khademi, & Lopes, 
2012). In addition, rehabilitation exercise games using the Kinect sensor are 
under development for use in the home setting (Shapi’i, Bahari, Arshad, Zin, 
& Mahayuddin, 2015). Although this research demonstrates a variety of 
clinical uses for the Kinect sensor, our research has advanced smart home 
technology by real-world operation of the Kinect sensor in older adults’ 
residences.
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Table 1.  Sensor System Modalities and Descriptions.

Type of sensor Description

Passive infrared 
(PIR)

Installed to detect presence in a particular room (e.g., living 
room, by the door or bathroom) as well as for specific 
activities. For example, a motion sensor installed on the 
ceiling above the shower detects showering activity.

Bed sensor The bed sensor is a set of four hydraulic transducers installed 
under the mattress which captures a ballistocardiogram, 
respiration, and bed restlessness as someone lies on the bed. 
Specialized signal processing is used to compute heart rate, 
respiration rate, and restlessness every 15 s.

Depth camera A depth camera is used to compute gait parameters (gait 
speed, walks/day, and stride length). The depth camera also 
uses a fall-detection algorithm to detect falls in real-time and 
send alerts to designated individuals (e.g., clinical staff) with a 
link to a depth video (shadow-like silhouette images) showing 
the fall.

Doppler radar Doppler radar systems have been tested to measure gait 
parameters and to detect falls. A Doppler radar transmits an 
electromagnetic wave at a specific frequency and measures 
the shifts in the reflected waves, like weather radars. These 
frequency shifts can then be used to obtain the velocities of 
the person’s body parts in the radar’s direction.

Currently, novel sensor systems at TigerPlace use multimodal data sources 
to collect an array of data 24/7 about residents. Some types of sensor systems 
are listed and described in Table 1. These data sources extend the ability of 
TigerPlace’s nurses to detect baseline changes in a resident’s activity levels, 
without having to be physically present for the assessment. This is a shift 
from traditional models of assessment. For example, wall-mounted sensor 
systems help nurses detect when a resident is not as active in their whole 
apartment, and are spending more time in bed than usual.

Figure 1 illustrates motion density sensor data visualized through an elec-
tronic interface used by nurses to evaluate activity in resident apartments in 
independent living. This specific illustration also shows that an alert was gen-
erated based on a computation using a pre-determined number of standard 
deviations change from the resident’s normal activity level.

An alert email was also sent to a nurse indicating that the resident was 
having increased motion in their apartment on September 30, 2015. This 
increased motion can be seen by the light gray highlighted areas between 
2:00 and 6:00 a.m. on September 30, 2015. In addition, the resident appears 
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to be leaving the apartment (black areas between 2:00 and 6:00 a.m. on 
September 30, 2015) during this same time frame. Based on the patterns 
observed in this interface, this activity is irregular activity for this person 
compared with other nights in this density map. This irregular activity is a 
situation that a nurse may want to review. Case study analyses indicate that 
increasing periods of inactivity (decreased motion density) could indicate the 
resident is experiencing higher levels of depression (Galambos, Skubic, 
Wang, & Rantz, 2013), or it could indicate that the resident is experiencing an 
illness that is causing greater fatigue and weakness, prompting more rest. 
Inactivity (black areas) could also mean that the resident has left the apart-
ment at unusual periods of the night or day which may be an indicator of 
confusion or altered cognitive state.

The sensor system used in this research provides a complex and challeng-
ing opportunity to combine different modes of sensor data input that can be 
triangulated to help nurses detect changes in health conditions and functional 
decline in frail elders. Not only do sensor system modalities help build a bet-
ter picture of a resident’s current health status, but with the addition of the 
Kinect sensors, they provide automated assessment of in-home gait parame-
ters and actual falls. Obtaining gait pattern data provides supplemental infor-
mation about residents’ health status because research has shown that—down 
to the 10th of a meter per second—an older person’s pace, along with their 
age and gender, can predict their life expectancy just as well as the complex 
battery of other health indicators (Harmon, 2011). Therefore, to investigate 

Figure 1.  Motion sensor data density visualization including night-time motion 
density: Increase alert.
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whether Kinect sensor data could be used to identify individuals at increased 
risk of falling, we analyzed the association between pre-fall changes in 
Kinect-recorded gait parameters and known fall events in TigerPlace resi-
dents with Kinect sensors.

Method

Setting

TigerPlace is a senior housing community in Columbia, Missouri, with 54 
independent living apartments. Named for the MU mascot, it is an innovative 
living environment built and operated by Americare Senior Living, in affilia-
tion with the MU Sinclair School of Nursing. Infrastructure is in place to 
support sensor networks in TigerPlace apartments. TigerPlace provides a 
unique opportunity in which to develop and evaluate technology in a collab-
orative setting with researchers from MU departments of Electrical and 
Computer Engineering, Computer Science, Health Management and 
Informatics, and Schools of Nursing, Health Professions, Social Work, and 
Medicine. These researchers form an interdisciplinary team to develop and 
implement projects that improve the quality of life and care of seniors. No 
other setting in the United States offers the population of subjects, research 
infrastructure, faculty, and resources like TigerPlace; research projects are 
encouraged, and residents who choose to participate enjoy the experience of 
developing new technologies to help seniors’ age in place. TigerPlace resi-
dents, like other seniors in Missouri and the United States, are concerned 
about maintaining independence and dignity.

TigerPlace is a key component of the Sinclair School of Nursing Aging in 
Place project that was designed with MU faculty working with Americare 
Systems, Inc., Sikeston, Missouri, to promote the independence of older 
adults. Nurses, physical therapists, occupational therapists, and architects 
with an emphasis in environmental design participated in the building plan. 
At TigerPlace, residents can age in place without fear of being moved to a 
traditional nursing home unless they choose to leave. Findings indicate that 
with the right supportive and restorative services, it is possible to help elders 
improve their health and well-being and delay or prevent nursing home place-
ment (Rantz et al., 2005). Registered nurse (RN) care coordinators direct the 
wellness center that offers exercise and other health-related classes, and con-
duct regular health assessments to promote residents’ well-being and vitality. 
An electronic health record is used to document day-to-day care. Aging in 
Place staff provide an array of home care services such as medication man-
agement, assistance with activities of daily living, care coordination of health 
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conditions, communication with residents’ physicians and other health care 
providers, psychosocial services, and Medicare home health care when resi-
dents need and qualify for that service.

Sample

Data required for the analysis in the present study were available for a conve-
nience sample of 23 TigerPlace participants with Kinect sensor systems and 
were collected over intervals ranging from 3 to 48 months, the length of 
which depended on the duration of participants’ enrollment in the study and 
length of stay in the community. We excluded participants living with another 
person because when co-habiting individuals have similar height and gait 
velocities, their unique clusters of gait data are not discernable in the collec-
tive data. All participants were Caucasian and 70% were female. At the time 
of admission to TigerPlace, participants were, on average, 85.2 years of age, 
and at the time of data analysis, had a mean length of stay of 49 months. As 
with TigerPlace research, the institutional review board at MU approved the 
research and participants provided written informed consent.

Sensor Data Collected

The Kinect sensor continuously monitors and records residents’ in-home 
movement occurring within sensor range. The Kinect sensor is typically 
located on a small shelf above the front door to maximize the camera’s view 
of activity in the main living area. A computer that logs and transmits the 
Kinect depth image data is located in a nearby kitchen cabinet. Data are pro-
cessed as depth images that appear as silhouettes to protect privacy. If the 
Kinect system detected a potential fall, an alert was sent to staff who 
responded to check on the resident. If the resident was found on the floor in 
response to a fall alert or the resident self-reported a fall in response to the 
alert, the fall was recorded in the resident’s health record. In the present study, 
a fall was defined as an observed or reported unexpected event in which the 
resident came to rest on the ground or lower surface. In addition, falls that did 
not generate an alert but that TigerPlace staff observed or falls that were oth-
erwise reported, for example, by residents themselves or family members, 
were recorded in residents’ health records. After extracting fall event data 
from health records, we were able to determine the frequency of falls for 
TigerPlace residents with Kinect system installations and then analyze the 
association between participants’ fall events and change in in-home gait 
speed and stride length. Figure 2 provides an illustration of the interface 
developed to display gait parameter sensor data, longitudinally for 30 days. 
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Figure 3 represents fall events for a participant plotted along weekly gait 
speed estimates during an 87-week period.

Data Collection

Skeletal tracking with the Kinect Software Development Kit is limited to a 
range of 1.5 to 4 m, which is insufficient to capture walking sequences in 
some areas of TigerPlace apartments. Therefore, raw disparity values from 
the Kinect depth stream, which is a subtraction technique to separate fore-
ground 3D objects (e.g., the person walking) from background stationary 
objects, such as furniture, are processed to yield walk data for distances of up 
to 8 m from the Kinect (Stone & Skubic, 2013). Algorithms developed for the 
Kinect sensor automatically identify, segment and analyze walking segments 
of at least 1.2 m occurring within sensor range for gait speed, stride time, 
stride length, and height of the individual walking. The height of each resi-
dent was measured a priori so that a cluster, or mode, in the dataset is recog-
nized as belonging to that resident. Modes that closely match the known 
height of a resident are used for resident model initialization. Typically, a 
range of 4 to 35 walks per day are required to identify walks belonging to a 
resident and not another person. Assuming a dataset of walks exists for a resi-
dent, the model is updated using data from a given time interval, or model 
window size, which may be as short as 2 weeks or as long as 3 months. A 

Figure 2.  Gait parameter interface showing calculated stride length and time, gait 
speed, and alerts.
Note. TUG = Timed Up and Go.
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longer model window size may be required to initialize a model for a resident 
who walks infrequently. Stride parameters are extracted only for walks for 
which at least five sequential steps can be identified. Further information on 
data science methods can be accessed in related papers at the following web-
site: https://www.eldertech.missouri.edu/.

A recent subset of the data (e.g., 1-2 weeks) used in model initialization is 
used to calculate gait parameters. A 2-week gait parameter window size 
reflects longer term changes compared with short-term fluctuations that may 
be represented in a 1-week gait parameter window. Gait parameter estimates 
for any given day are calculated as a weighted average of gait data from all 
walks identified in that resident’s apartment within the gait parameter win-
dow. A weight is applied to each walk based on the likelihood that it reflects 
the resident model. The window for both the model estimation and gait 
parameter estimation slide forward one day and the process of model estima-
tion repeats itself using the previous model estimate for the update procedure. 
The process of identifying walking segments, extracting gait parameters, 
updating resident models, and calculating gait parameters was and continues 
to be completely automated. Data recorded by the sensor systems are con-
tinuously logged 24/7 by participant identification number and stored on a 

Figure 3.  Weekly gait speed averages with falls plotted on in-home gait speed 
graph.
Note. o = average gait speed; = fall event.
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secure server, of which Kinect data account for 66 terabytes being used to 
develop algorithms for gait speed change and fall detection. In totality, sensor 
network data account for 82 terabytes of storage space.

Depending on the length of time over which gait data are collected, 
daily gait parameter data may be available in model window sizes of 30, 
60, and 90 days and gait parameter window sizes of 7 and 14 days, yield-
ing up to six possible estimates each day for each gait parameter (i.e., gait 
speed, stride length, stride time). For this study, window sizes of 30 days 
and 14 days were used for the model and gait parameter estimation steps, 
respectively. These window sizes were selected so that a sufficient number 
of walks were included to allow accurate resident modeling but not exclud-
ing cases lacking data that would be needed to compute model window 
sizes of 60 or 90 days.

Data Analysis

Daily gait parameter estimates were available for 23 participants. For those 
residents that had falls during the study period, we calculated cumulative 
change in gait parameters from 30 days before a fall. For those residents 
that had no falls during the study period, we chose a random 30-day win-
dow to serve as a control. For a fall to be included in the model, the resident 
had to have at least 14 days of gait parameter estimates (not necessarily 
consecutive) or no more than 16 days missing for the entire 30-day window 
before a fall event. A total of 69 falls met the aforementioned criteria, which 
resulted in 2,070 observations of gait parameters. We estimated a logistic 
regression model to predict the odds and the probability of a fall event 
based on cumulative change in gait parameters at intervals of 7, 14, 21, and 
28 days. The outcome was whether a resident had a fall at the end of the 
30-day window, and the predictor variable was cumulative change stratified 
by time (numerical day in the 30-day window). Two separate models were 
run for cumulative change in in-home gait speed and cumulative change in 
in-home stride length stratified by time. All analyses were run in SAS 9.4 
with a significance level of .05.

Results

Ten of the 23 participants had no falls during the monitoring period, which 
varied by length of residence from 2011 to 2015. Participants with no fall 
events were, on average, 85 years of age on admission to TigerPlace and had 
resided there for an average of 44 months at the time of data collection. 
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Residents who had fallen (n = 13) had between 1 and 12 fall events, were 
85.4 years of age, and had resided at TigerPlace for an average of 52 months.

Preliminary results indicate that cumulative change in speed over time is 
significantly associated with probability of a fall (p < .0001). The odds of a 
resident falling within 3 weeks after a cumulative decline of 2.54 cm/s over 7 
days is 4.22 (95% confidence interval [CI] = [2.14, 8.30]) times the odds of a 
resident falling within 3 weeks after no change in in-home gait speed. The 
model estimates that a cumulative decrease of 5.1 cm/s over 7 days in in-
home gait speed is associated with an 86.3% probability of falling within the 
next 3 weeks compared with a 19.5% probability for those with no change. 
The area under the curve (ROC) is 0.86 indicating that cumulative change in 
gait speed is good at separating residents that have fallen from non-fallers.

Similarly, preliminary results show that cumulative changes in stride 
length over time are significantly associated with probability of a fall (p value 
< .0001). The odds of a resident falling within 3 weeks after a cumulative 
change of 2.54 cm over 7 days is 6.78 (95% CI = [2.69, 17.07]) times the 
odds of a resident falling within 3 weeks after no change in in-home stride 
length. This model estimates that a cumulative decrease of 7.6 cm over 7 days 
in in-home stride length is associated with a 50.6% probability of falling 
within the next 3 weeks compared with 11.4% probability for those with no 
change. The ROC is 0.88 which indicates that cumulative change in stride 
length is good at separating residents who have fallen from non-fallers.

Discussion

Our results demonstrate the feasibility of using environmentally embedded 
sensors to measure in-home gait parameters associated with the occurrence of 
falls. The Kinect sensor system holds promise for unobtrusively monitoring 
older adults in their homes while maintaining privacy and eliminating the bur-
den of additional monitoring procedures. The Kinect sensor system does not 
require the older adult to perform gait tests, wear devices, or push a button 
after a fall. In addition, in-home gait parameters can be measured continuously 
so that changes over time can be automatically and promptly detected, alerts 
generated, and appropriate medical or therapy referrals arranged. In response 
to deterioration in gait speed or stride length, best practice guidelines for 
screening and assessment and fall prevention interventions could be initiated 
before a fall occurs and significant injury or disability ensues (Kenny et al., 
2011). Residents report feeling more secure in their home environment know-
ing that the sensors will detect falls and that assistance will be provided when 
needed (Jacelon & Hanson, 2013; Rantz et al., 2015).
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Our model estimated that a 5.1 cm/s (i.e., 0.051 m/s) decrease in in-home 
gait speed was associated with a high probability of falling within 3 weeks, 
and this is consistent with published thresholds of 0.05 m/s for a small mean-
ingful change in gait speed assessed over distances of 10 foot, 10 m, or 4 m 
(Perera, Mody, Woodman, & Studenski, 2006). Similarly, Kwon and col-
leagues’ (2009) analysis of gait speed change for 424 older adults in a clinical 
exercise trial showed that a change of 0.03 to 0.05 m/s corresponded to an 
effect size of 0.2 and a change of 0.08 m/s corresponded to an effect size of 
0.5. More importantly, that we can detect similar declines in gait speed by 
recording and analyzing walking segments as older adults go about their 
everyday activity means that decline may be detected earlier and clinical 
interventions initiated sooner than would occur by intermittent clinical evalu-
ation. Benefits of early interventions in the presence of declining walk param-
eters extend beyond reducing fall risk. Improvement, as opposed to decline, 
in gait speed of 0.1 m/s over 1 year, has been associated with a 58% reduction 
in relative risk of mortality over the subsequent 8 years (Hardy, Perera, 
Roumani, Chandler, & Studenski, 2007).

Another approach to unobtrusive and ongoing gait assessment involves 
using passive infrared motion sensors (Kaye et  al., 2012). Kaye and col-
leagues (2012) used sensors positioned in a sensor line (e.g., attached to the 
ceiling of a hallway or corridor) in the homes of 76 community-dwelling 
older adults to estimate gait speed from the pattern and time intervals of sen-
sor firings and validated these estimates against performance-based mobility 
tests. Furthering this work, Rana, Austin, Jacobs, Karunanithi, and Kaye 
(2013) demonstrated that transition time between rooms, measured with 
infrared sensors positioned throughout the dwelling, not only correlated 
highly with gait velocity measured along the “sensor line” (R2 = .98) but 
yielded a greater number and variety of gait velocity estimates. Although 
infrared sensors offer a compelling alternative to camera-based sensors for 
measuring in-home gait speed, they lack the fall-detection functionality that 
our team has developed with Kinect sensors.

The relevance of continuous in-home gait speed analysis is to be able to 
apply these findings to the ongoing, real-time data and to automatically send 
alerts about increasing risk of a fall to the older adult, nearby family mem-
bers, and/or health care staff. With 3 weeks of lead time, the older person 
could seek assistance to improve their functional capacity or health status and 
possibly avoid the fall. Having lead time to alert the older person and others 
has enormous potential to change the loss of functional abilities, trauma, and 
potentially death that result from falls.

In addition, by identifying the in-home gait speed change threshold at 
which fall risk is substantially increased, alert algorithms can be further 
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refined for greater specificity. Rather than use the pre-determined standard 
deviation multiplier developed initially through retrospective analysis and 
clinician expertise, new alert parameters based on absolute change in gait 
speed and stride length can be tested alongside the current alert algorithm. 
Refining alerts for greater specificity is important not only to promptly iden-
tify decline in elders’ physical function but also to prevent false alarms that 
cause clinicians to become alert-fatigued and desensitized to safety alerts 
(Agency for Healthcare Research and Quality, 2015). Our team is committed 
to ongoing efforts that advance sensor technology research and optimize clin-
ical relevance to support aging in place for the older adult population.

Our analysis is not without several limitations. One set of limitations is 
related to generalizability of the findings. Although our sample of fall events 
included 69 falls, these fall events came from a participant sample of 23 indi-
viduals and were restricted to TigerPlace residents. Because TigerPlace resi-
dents receive RN care coordination services and may age in place as their 
health and function decline, it is unclear how representative the sample is of 
other independent living community residents.

Second, as noted above, not all falls were directly observed or captured by 
the Kinect sensor. The accuracy of fall history could not be confirmed in 
some cases. That being said, many studies on fall risk factors and fall inci-
dence rely on self-reports of fall events as most falls go unwitnessed (Barak 
et al., 2006; Rosen, Mack, & Noonan, 2013; Shumway-Cook et al., 2009). 
However, “falls” were not explicitly defined within the health record at 
TigerPlace and thus were subject to clinicians’ interpretation of post-fall cir-
cumstances or residents’ self-report.

Third, our analysis was a retrospective analysis of previously recorded 
sensor data. Use of existing data not only has the advantages of reduced cost 
and burden but also, in the present study, has the disadvantages of missing 
data related to sensor system failure and missing data related to inadequate 
number of walks for resident modeling. It is not possible to know whether 
residents with too few walks to compute individual models had fall events 
that were not included in the analysis. Finally, apartments with greater than 
one resident were excluded from the analysis because resident models could 
not be computed accurately at the time the data were analyzed.

Future research could involve intervention trials to determine whether 
fall rates differ for senior housing residents who receive therapeutic inter-
ventions based on real-time gait parameter data from Kinect sensors com-
pared with senior housing residents who receive standard of care. Assisted 
living would be an ideal setting in which to test the Kinect sensor-alert sys-
tem because 24-hr staff are available to respond to fall alerts and falls are a 
major problem in this setting, affecting 21% of residents in any 90-day 
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period (Sengupta, Harris-Kojetin, & Caffrey, 2015). In addition, future 
research to refine the alert algorithms as described above could occur in 
tandem with a clinical trial or large-scale deployment to yield greater accu-
racy in algorithmic predictions.

Sensor systems that assist nurse care coordinators to detect functional 
decline including changes in gait that indicate an increased fall risk and actual 
falls are sorely needed to facilitate earlier detection, treatment, and preven-
tion of these costly events. Traditional systems of assessment that require 
nurses to complete unidimensional instruments are risky, because they are 
not as timely and they typically do not incorporate multiple assessment 
modalities in a living environment like the sensors described in this study. 
Another benefit of sensor data collected over months and years on the same 
residents is the longitudinal nature of this big data that enhances the nurse’s 
ability to detect changes in baseline over time much more effectively than do 
traditional assessment methods.
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