
  

  

Abstract—Research indicates that long-term monitoring of 
vital signs and activity in elderly adults may provide 
opportunities for maintaining quality-of-life and extending 
independence into later years.  Such a strategy requires 
development of a system to collect this data while imposing 
minimal intrusion into the lives of those being monitored.  To 
further this goal, we have developed a hydraulic bed sensor to 
non-invasively monitor heartbeat and respiration during sleep.  
This paper describes the refinement of our developed prototype 
and signal processing methods, along with an evaluation of the 
robustness of our algorithms and results from testing.  An 
evaluation of our sensor on a group of five diverse subjects 
(ranging in age from 24 to 67, two with cardiac history), in 
three different positions, demonstrates accuracy within 8 beats 
per minute up to 97.5% of the time. 
 

I. INTRODUCTION 
ong-term monitoring of the elderly via discrete sensing 
technologies is emerging as a strategy for detecting 

early signs of illness and functional decline [1].  It is 
anticipated that such an approach may provide opportunities 
for appropriate interventions that will contribute to 
maintaining health, quality-of-life, and independence [2].  
The motivation for this work is to support continuous, in-
home monitoring of elderly residents via an integrated 
sensor network, capturing activity patterns and automatically 
recognizing changes in these patterns that may indicate a 
declining health condition.  To this end, we have installed 38 
sensor networks in the homes of elderly residents living in 
TigerPlace, an aging-in-place community located in 
Columbia, MO.  We currently employ a bed sensor [3] 
within these networks, but desire an improved sensor that is 
better able to provide quantitative pulse and respiration rates 
during sleep. 

In comparing sensor data changes to health changes, the 
bed sensor has proven to be a useful component of the 
sensor network.  We have observed dramatic changes in bed 
sensor data over a very short time, as well as more gradual 
changes over 2-3 weeks, that correspond to impending 
changes in health condition, e.g., cardiac problems [1,4].  
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Thus, our research has shown the importance of this type of 
continuous monitoring in the home environment. 

Previously, we reported on the development of a hydraulic 
bed sensor capable of monitoring heartbeat and respiration 
during sleep [5].  This sensor is placed beneath a standard 
mattress, unnoticed by the subject, and detects subtle 
pressure differentials from which we can extract pulse and 
respiration.  Our initial results indicated much promise, and 
we have since refined the hydraulic transducer and signal 
processing system (including hardware and software) to 
yield an improved system. We have tested the sensor on a 
wider range of subjects, and have demonstrated robustness 
of the signal processing algorithms using both real and 
synthesized signals.  Efforts are underway to deploy this 
system as part of our existing sensor networks at TigerPlace, 
replacing the current transducer. 

This paper details the improvements made since [5] and 
gives the results of our evaluation. 
 

II. METHODS 

A. Bed sensor hardware 
The body of the transducer is constructed from commonly 

available materials acquired from a local hardware store.  
Three inch wide (7.6 cm) discharge hose is used to form a 
flat bladder of water for sensing physiological movement.  
This hose is sealed, bled of all air, and fitted at one end with 
an integrated silicon pressure sensor (Freescale 
MPX5010GP).  The hardware of the prototype sensor and its 
position beneath the mattress is shown in Fig. 1.  The overall 
mechanism and materials are substantially the same as our 
first working prototype, but we have made the following 
improvements: 

 
1. PVC cement was used to seal one end completely, 

and the other end was sealed except for a short 
length (6 cm) of small (2.8 mm inside diameter) 
vinyl tubing providing a port for attaching  the 
integrated pressure sensor. 

2. The output signal of the integrated pressure sensor 
is carried over a one meter cable to the hardware 
filtering circuit. 

3. Hardware filtering circuitry is implemented, 
comprised of an amplification and a filtering stage. 
We amplify the signal by a factor of 10 using a 741 
op-amp, and then employ an 8th-order integrated 
Bessel filter (Maxim MAX7401) for anti-aliasing 
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and noise reduction, with a corner frequency of 38 
Hz.  We then sample the signal using a 12-bit ADC 
at a sampling rate of 100 Hz.  Filtering in hardware 
eliminates the need to sample at a much higher 
frequency and then filter and downsample in 
software. 

 

B. Detecting heartbeats 
The algorithm used to detect heartbeats from the signal 

generated by the hydraulic transducer may be summarized as 
follows: 
 

1. Low-pass filter the sampled signal with a cutoff 
frequency of 10 Hz. 

2. Find the windowed peak-to-peak deviation 
(WPPD), expressed by: 
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3. Low-pass filter the WPPD (appropriate cutoff 

frequencies are discussed in section IV). 
4. Segment the signal into 15-second (non-

overlapping) segments. 
5. Validate each segment prior to processing, marking 

segments with too much noise, which correspond to 
restlessness in bed. 

6. Determine heart rate within each segment by 
counting the peaks of the low-pass filtered WPPD 
within a segment and multiplying by 4 (consistent 
with clinical practice). 

 

C. Detecting respiration 
Respiration is readily detected from the output of the 

hydraulic transducer via low-pass filtering.  The respiratory 
component is of much lower frequency, has smoother 
transitions, and has greater amplitude than either the cardiac 
component or noise, so extraction of respiration is achieved 
via a low-pass filter.  We utilize a low-pass filter with cutoff 
frequency of 1 Hz. 

 
Fig. 1.  Positioning of bed sensor for testing 

 
Fig. 2.  Heartbeats detected from synthesized signal:  (a) shows the 
cardiac component (extracted from real data), (b) shows the 
synthesized respiratory component (at 4 times the original captured 
frequency and ¼ the amplitude), (c) is the resulting composite (our 
synthesized signal), (d) shows detection of heartbeats from our 
algorithm compared to the ground truth. 
 

 

D. Ground truth acquisition 
Ground truth for validating the output of the hydraulic 

sensor is collected via a piezoelectric pulse sensor connected 
to the subject’s finger (ADInstruments MLT1010) and a 
piezoelectric respiration band wrapped around the subject’s 
torso (ADInstruments MLT1132).  These signals are 
simultaneously acquired and sampled through the same 
ADC as the signal from the hydraulic sensor, using the same 
sampling rate and avoiding issues of synchronization 
between separate devices. 

 

III. EVALUATING THE ROBUSTNESS OF THE ALGORITHM 
In order to evaluate the robustness of our algorithm, we 

generated synthetic signals, allowing explicit control of 
frequency and amplitude for both heartbeat and respiration.  
This approach was taken to provide a measure of confidence 
in our methods prior to embarking on a full study with 
human subjects.  Additionally, we have an interest in 
distinguishing shallow breathing from low heart rate, and 
would like to demonstrate that our algorithm can handle 
such a scenario. 

To generate synthetic signals, we acquired a real signal 
through our system, separated and extracted the cardiac and 
respiratory components of the original composite signal, and 
then manipulate the individual components in isolation 
before recombining into new composites.  One of the 
questions we wish to address is whether our system is able to 
distinguish heartbeats in the presence of very high 
respiration rates; to address this, we change the rate and 
amplitude of the respiration component, recombine with the 
cardiac component, and then run our heartbeat detection 
algorithm. 
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Fig. 3.  Detecting heartbeats from real data.  Here, the subject was 
asked to breathe at approximately 30 breaths per minute:  (a) shows 
the collected signal, (b) shows the extracted cardiac component, (c) 
shows the extracted respiratory component, (d) shows the respiratory 
ground truth (from a piezoelectric respiratory belt), (e) demonstrates 
identification of heartbeats by the hydraulic sensor and algorithm 
compared to the ground truth.  Note that the algorithm detects 
heartbeats directly from (a); (b) is only shown for reference and 
comparison to (a). 
 
 
Manipulating amplitude of the respiratory component is 

achieved by simply scaling the sample values by a chosen 
constant.  Frequency is controlled by choosing a segment of 
respiration, resampling at a higher or lower rate to yield the 
desired change, and repeating the resampled segment 
(choosing appropriate zero-crossing endpoints to avoid 
discontinuities).  The respiratory component of the signal is 
of low enough frequency that such a resampling does not 
result in any corruption of the original signal, and provides a 
realistic model of breathing output at the target frequency. 

We have synthesized signals with respiration rates that are 
0.5, 1, 2, 4, and 8 times the frequency of the actual 
respiration signal captured.  We have scaled the amplitude of 
the respiration by factors of 0.25, 0.5, 1, 2, and 4, and added 
every possible respiratory combination with an extracted 
cardiac component.  In every case, we achieved 100% 
heartbeat detection (36 out of 36 over a 30 second segment).  
An example of the synthesized signal along with the 
detected heartbeats (superimposed over the ground truth) is 
shown in Fig. 2. 

To confirm the validity of this approach to synthesizing a 
signal, we simulated similar conditions by having a subject 
breathe at a specified rate during data collection.    The 
signals for a 30-second segment of this test are shown in 
Fig. 3. 

We thus conclude that our algorithm for detecting 
heartbeats is relatively insensitive to changes in respiration, 
and there is very little chance of respiration being 
erroneously detected as low heart rate.  Robustness of our 
heartbeat detection algorithm in the presence of varying 
respiration is expected due to the manner in which it 

operates.  Specifically, since the WPPD is effectively 
detecting a sudden increase (or impulse) of energy in the 
system within a small window, it should not be affected by 
respiration (because, even at 60 breaths per minute, 
respiration will not cause sudden impulses of energy since 
the lungs do not operate in a pulsatile fashion). 

IV. EVALUATION TRIAL 
After our preliminary testing of the system and evaluation 

of our algorithm [5], we conducted a small trial involving 
five subjects, utilizing our newly constructed transducer (see 
Table I for summary information).   

This group, while small, was representative of a wide 
range of ages, gender, body types, and cardiac conditions.  
This is significant, given that our target eldercare population 
is of advanced age, often with diagnosed cardiac problems.  
Two of our subjects reported prior cardiac conditions; one 
had a previously repaired ventricular septal defect, and 
another had suffered a mild heart attack. 

Subjects were asked to lie on the bed for periods of two 
minutes on the back, right side, back, left side, and back 
again (approximately 10 minutes in total).  After collecting 
the data, we used our algorithm to detect heart rates.  
Preliminary examination of these data led us to modify two 
parameters of our algorithm:  the size of the window, ws, 
used for the WPPD, and the cutoff frequency, f, used for 
post-WPPD low-pass filtering.  Choices of ws included 150, 
250, 400, and 600 ms; choices of f included 1, 1.5, and 2 Hz.  
Table II shows the results of our testing. 

In reading Table II, the columns indicate different 
combinations of parameter values, and the three rows under 
each subject indicate the percentage of segments for which 
the detected heartbeats per 15-second segment were:  zero or 
one beat away from the ground truth (< 2), two beats away 
from the ground truth (= 2), or three or more beats away 
from the ground truth (> 2).  We note that, due to possible 
drift of the detected heartbeats and windowing of the signal, 
plus or minus one heartbeat is within the expected margin, 
and plus or minus two heartbeats is actually the best we 
could guarantee with a perfectly reliable algorithm (one that 
never missed an actual heartbeat).  Therefore, we emphasize 
that only the third row reported for each subject shows the 
representative error. 

 
 

TABLE I 
DETAILS OF POPULATION FOR EVALUATION TRIAL 

 
 Gender Age Weight 

(kg) 
Height 
(cm) 

Prior 
cardiac 
history 

Subject #1 male 24 113 183 No 

Subject #2 male 30 79 187 No 

Subject #3 female 31 53 163 Yes 

Subject #4 female 56 68 163 No 

Subject #5 male 67 76 177 Yes 
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Figs. 4-5 illustrate the processing behind the entries in 
Table II.  Fig. 4 shows a particular 15-second segment 
(specifically, segment 39; ws=150 ms, f=1.5 Hz) of data 
from subject #5.  The figure shows the detected heartbeats 
from the hydraulic sensor (the low-frequency signal), 
superimposed with the piezoelectric pulse sensor ground 
truth (with the characteristic heartbeat pattern).  It is clear 
that the algorithm detects 15 heartbeats, which matches the 
ground truth exactly.  We note that there is some “drift” 
between the detected heartbeats and the ground truth, but we 
find that this drift tends to average-out over time.  Fig. 5 
shows a comparison of the number of detected heartbeats 
versus ground truth for the entire 10+ minute period for 
subject #5 (ws=150 ms, f=1.5 Hz).  It is from these data that 
Table II is generated, varying the algorithm parameters for 
each subject. 
 Examining Table II, we note that our original parameter 
values [5] in column F (ws=250 ms, f=2 Hz) work very well 
for subjects #1 and 4 (as do the parameters of Column I), but 
the results are much worse for subjects #2, 3, and 5.  Column 
B demonstrates strong results for subjects #2-5, but is 
markedly worse for subject #1.  We conclude, then, that we 
may choose some set of starting parameters, but the ideal 
values depend upon the particular subject. 

Age did not appear to adversely affect the heartbeat 
discrimination ability of the hydraulic sensor.  In fact, the 

very best results were obtained from subject #5, who is 
closest in age to our target population (approximately 70-94 
[1]).  Additionally, he is the subject who reported a previous 
heart attack, providing further evidence that the hydraulic 
system will be suitable for our intended purpose. 

If the ideal parameter values are known, using 15-second 
segments, we are able to report heart rates within 8 beats per 
minute (bpm) of ground truth from 92.7 to 97.5% of the 
time.  While this is not perfect, it is certainly enough to 
detect long-term trends in data, which is our target 
application.  Additionally, we have found that the percentage 
of beats detected over the entire data run for each subject 
indicates success rates of 95.6 to 99.8%, using the best 
values for ws and f identified for each subject from Table II. 
 The data demonstrates that the captured signal can vary 
from person to person, and may therefore require optimized 
parameters for each individual; this is consistent with the 
observations of Starr [6].  By showing that we can achieve 
acceptable results by variation of only two parameters, we 
open the possibility of developing a method of automatically 
tuning the parameters based upon some initial estimate.  
Keeping in mind our goal of long-term monitoring, this 
approach is entirely possible, potentially including some 
manual input based upon prior knowledge of the subject's 
medical history.  

TABLE II 
RESULTS OF EVALUATION TRIAL, PROCESSING THE SIGNAL WITH VARYING ALGORITHM PARAMETERS 

 
A B C D E F G H I J K L 

 
ws=150 ws=250 ws=400 ws=600 

 
f=1 Hz f=1.5 Hz f=2 Hz f=1 Hz f=1.5 Hz f=2 Hz f=1 Hz f=1.5 Hz f=2 Hz f=1 Hz f=1.5 Hz f=2 Hz 

Subject #1                         
<2 16.67 69.05 59.52 16.67 69.05 73.81 16.67 57.14 69.05 16.67 33.33 57.14 
=2 0.00 11.90 23.81 0.00 11.90 19.05 0.00 14.29 23.81 0.00 14.29 21.43 
>2 83.33 19.05 16.67 83.33 19.05 7.14 83.33 28.57 7.14 83.33 52.38 21.43 

Subject #2                         
<2 17.50 90.00 40.00 17.50 87.50 40.00 17.50 62.50 60.00 17.50 57.50 57.50 
=2 5.00 2.50 15.00 5.00 2.50 17.50 2.50 27.50 17.50 2.50 12.50 15.00 
>2 77.50 7.50 45.00 77.50 10.00 42.50 80.00 10.00 22.50 80.00 30.00 27.50 

Subject #3                         
<2 24.39 70.73 26.83 24.39 75.61 39.02 21.95 65.85 53.66 17.07 48.78 43.90 
=2 9.76 21.95 12.20 4.88 7.32 9.76 2.44 21.95 14.63 2.44 21.95 29.27 
>2 65.85 7.32 60.98 70.73 17.07 51.22 75.61 12.20 31.71 80.49 29.27 26.83 

Subject #4                         
<2 25.64 92.31 89.74 25.64 87.18 92.31 25.64 79.49 79.49 25.64 41.03 74.36 
=2 0.00 2.56 5.13 0.00 5.13 2.56 0.00 12.82 15.38 0.00 25.64 15.38 
>2 74.36 5.13 5.13 74.36 7.69 5.13 74.36 7.69 5.13 74.36 33.33 10.26 

Subject #5                         
<2 40.00 87.50 52.50 40.00 82.50 52.50 32.50 82.50 62.50 25.00 57.50 47.50 
=2 15.00 10.00 7.50 10.00 17.50 15.00 12.50 10.00 10.00 5.00 15.00 17.50 
>2 45.00 2.50 40.00 50.00 0.00 32.50 55.00 7.50 27.50 70.00 27.50 35.00 

 
The table indicates, for each subject, and for each combination of algorithm parameters (ws is the WPPD window size, f is the post-WPPD filter cutoff 
frequency), the percentage of 15-second segments for which the hydraulic sensor reported heartbeat count: 

−within one beat of ground truth (< 2) 
−exactly two beats from ground truth (= 2), or 
−three or more beats from ground truth (> 2). 
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Fig. 4.  15-second segment of data from subject #5.  This figure 
shows that detected heartbeats (the low-frequency signal) correspond 
well with the ground truth (the pulsed signal). 

 

V. CONCLUSION 
The hydraulic bed sensor described here demonstrates 

great potential for use in long-term monitoring of heartbeat 
and respiration.  To date, we have focused our efforts on 
reliable detection of heartbeats; respiration and bed 
restlessness are also readily detected, but algorithms need to 
be implemented to automate the reporting of this 
information.  Current results indicate that accurate reporting 
of heart rate depends on appropriate choices of parameter 
values for our heartbeat detection algorithm, and it may be 
possible to further improve accuracy and robustness by 
incorporating adaptive features.  In the future, we will 
pursue more rigorous evaluation through development of 
metrics that go beyond comparisons of heart rate, evaluating 
the confidence of each detected heartbeat and reporting on a 
beat-by-beat basis the number of true positives (correctly 
detected heartbeats) versus false positives (no corresponding 
heartbeat in ground truth) and false negatives (missed 
heartbeats).  Our research group is moving forward to 
integrate the device into our sensor networks at TigerPlace, 
which will facilitate further evaluation of the device and 
refinement of its algorithms. 

 
 
 
 
 
 

 
 
Fig. 5.  Correspondence of the number of heartbeats detected via the 
hydraulic sensor (asterisks) and ground truth (circles).  These data are 
for subject #5, using a WPPD window size of 150 ms and post-
WPPD filter cutoff frequency of 1.5 Hz.  Segments showing zero 
heartbeats were periods of noise due to movement. 
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