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a b s t r a c t

In this paper, we present a method for recognizing human activity from linguistic summarizations of
temporal fuzzy inference curves representing the states of a three-dimensional object called voxel per-
son. A hierarchy of fuzzy logic is used, where the output from each level is summarized and fed into
the next level. We present a two level model for fall detection. The first level infers the states of the per-
son at each image. The second level operates on linguistic summarizations of voxel person’s states and
inference regarding activity is performed. The rules used for fall detection were designed under the
supervision of nurses to ensure that they reflect the manner in which elders perform these activities.
The proposed framework is extremely flexible. Rules can be modified, added, or removed, allowing for
per-resident customization based on knowledge about their cognitive and physical ability.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

Falls are a severe problem among the elderly. Many elders fall
and sustain an injury or remain on the floor for long durations until
someone discovers them, further compounding the severity. Our
goal is the continuous monitoring of human activity for the assess-
ment of the ‘‘well-being” of a resident and the detection of abnor-
mal or dangerous events, such as falls. It is important that both
theories and realistic technologies be developed for recognizing el-
derly activity, and that they do so in a non-invasive fashion. Video
sensors are a rich source of information that can be used to mon-
itor a scene, but privacy is always a concern. To preserve privacy,
segmentation of the human from an image results in a silhouette,
a binary map that distinguishes the individual from the back-
ground. The raw video is not stored and only silhouettes are used
to track the individual’s activity.

Silhouette extraction, namely, segmenting the human from an
image with the camera at a fixed location, is the first stage in vi-
deo-based activity analysis. The standard approach involves con-
structing a background model and regions in subsequent images
with significantly different characteristics are classified as fore-

ground [1–10]. Stauffer and Grimson introduced an adaptive meth-
od for background modeling and subtraction that utilizes a mixture
of Gaussians per pixel with a real-time, online approximation to
the model update [1]. Oliver et al. carry out foreground segmenta-
tion in eigenspace, where the background is modeled as an eigen-
background, however, no model update method was proposed [2].
These two well known approaches focus on adaptation and back-
ground modeling at a relatively low level of computer vision. They
do not present robust features for change detection or medium to
high level computer vision algorithms for region identification and
tracking. The Wallflower algorithm addresses a wider range of ex-
treme real-world conditions for complex and dynamic environ-
ments through pixel-level probabilistic background prediction
with a Wiener filter, region-level processing, and heuristics for glo-
bal sudden change detection and model correction [3]. We pro-
posed an adaptive system that uses higher level computer vision
for background modeling and reliable change detection through
fusing new texture and color histogram-based descriptors and a
modified hue, saturation, and value (HSV) space for shadow re-
moval [4].

While change detection is full of technical challenges, even after
the human is segmented from the background a larger problem
arises regarding the higher level processing of this information
for recognizing activity and detecting deviations from patterns of
normal activity. The most widely accepted approaches to modeling
human activity include; graphical models [11], dynamic Bayesian
networks [12], also known as dynamic graphical models, and more
specifically, hidden Markov models (HMMs) [2,13] and its variants
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(hierarchical HMMs [14], entropic-HMMs [15], coupled-HMMs
[2,16], etc).

In the area of short-term activity recognition, we used HMMs
for fall detection [13]. Our preliminary results indicate that a single
camera, geometric features calculated from silhouettes, and HMMs
can be used to detect some types of falls under a constrained set of
view dependent assumptions about how and where activities are
performed in the environment. However, while HMMs can be used
to identify a maximum likely model, from one of K known models,
they are not presently sufficient for rejecting unknown activity.
Thome and Miguet used hierarchical HMMs (HHMM) for video-
based fall detection [14]. The interesting aspect of that research
is the feature employed in the model. They use image rectification
to derive relationships between the three-dimensional angle corre-
sponding to the individual’s major orientation and the principal
axis of an ellipse fit to the human in a two-dimensional image.
The HHMM is hand designed and operates on an observation se-
quence of rectified angles.

Martin et al. presented a soft-computing approach to monitor-
ing the ‘‘well-being” of elders over long time periods using non-vi-
deo sensors such as passive infrared, toggle switches, vibration,
temperature, and pressure sensors [17]. They outlined data analy-
sis methods based on fuzzy reasoning, statistics, association analy-
sis, and trend analysis. Procedures for interpreting firings from
relatively simple sensors into fuzzy summaries were presented.
These summaries assist in characterizing resident’s trends and
aid in answering queries about deviations from these patterns,
such as ‘‘has the occupant’s sleep pattern changed significantly in
the past few months”.

In [18], we presented a method for constructing a three-dimen-
sional representation of the human from silhouettes acquired from
multiple cameras monitoring the same scene. Fuzzy logic is used to
determine the membership degree of the person to a pre-deter-
mined number of states at each image. In this paper, a method is
presented for generating a significantly smaller number of rich lin-
guistic summaries of the human’s state over time, in comparison to
the large number of state decisions made at each image, and a pro-
cedure is introduced for inferring activity from features calculated
from linguistic summarizations. Summarization and activity infer-
ence makes fall detection possible, something that was not accom-
plished in our earlier work. The next section is an overview of voxel
person construction and state reasoning. Some material is reported
again here because it is necessary for understanding the approach
taken in this paper.

2. Fuzzy logic for voxel person state classification

Our approach to monitoring human activity is based on fuzzy
set theory. Fuzzy set theory, introduced by Lotfi A. Zadeh in 1965
[19], is an extension of classical set theory. The memberships of
elements in a set are allowed to vary in their degree, instead of
being restricted to two values, as in classical set theory. A fuzzy
set is defined over a particular domain, and it is characterized by
a membership function that maps elements from the domain to
a real valued number, lA : A! ½0;1�. The fuzzy sets used in this pa-
per are trapezoidal membership functions, which are characterized
according to four ordered numbers, {a,b,c,d}. The membership of
the element x in the fuzzy set A is

lAðxÞ ¼maximum minimum
ðx� aÞ
ðb� aÞ ;1;

ðd� xÞ
ðd� cÞ

� �
; 0

� �
:

The way in which fuzzy set theory includes and models uncer-
tainty has led to extremely valuable applications in mathematics
and engineering [20–23]. One of the more well known branches
of fuzzy set theory is fuzzy logic, introduced by Zadeh in 1973

[20]. Fuzzy logic is a powerful framework for performing auto-
mated reasoning. An inference engine operates on rules that are
structured in an IF–THEN format. The IF part of the rule is called
the antecedent, while the THEN part of the rule is called the conse-
quent. Rules are constructed from linguistic variables. These vari-
ables take on the fuzzy values or fuzzy terms that are
represented as words and modeled as fuzzy subsets of an appropri-
ate domain. An example is the fuzzy linguistic variable ‘‘height of
voxel person’s centroid”, which can assume the terms low, med-
ium, and high, all defined as membership functions over an appro-
priate numerical domain. In this work, we use the standard
Mamdani-Assilion fuzzy inference system [20,24].

What is needed in the area of human activity analysis is not an-
other non-interpretable likelihood value that is useful for classify-
ing one of K known models or the ad hoc training of garbage
models [25] for reducing false alarms, but a confidence value that
can be understood and reliably used to reject a wide range of un-
known activities. The core representation and computing basis in
our work is significantly different from most. We believe that fuzzy
set theory and fuzzy logic are necessary in order to address the
inherent uncertainty related to modeling and inferring human
activity. Linguistic variables are used to describe features extracted
from a three-dimensional representation of the human. A separate
set of linguistic variables are used for representing the human’s
state and activity. Fuzzy logic is used for inferring the state and
activity. The system’s output are membership values that reside
in [0,1], fuzzy sets (terms) have been defined and assist in the
interpretation of these values, and fuzzy logic is the inference
mechanism. A fuzzy approach also has the advantage that the rules
and linguistic variables are understandable and simplify addition,
removal, and modification of the system’s knowledge.

Multiple cameras that jointly view the same environment are
crucial for the reliable recognition of activity. Different viewpoints
assist in coping with issues like occlusion and makes the construc-
tion of three-dimensional objects possible. After silhouettes are
individually extracted from each camera in a scene, a three-dimen-
sional representation of the human is constructed in voxel space,
which we call voxel person. Like pixels in a two-dimensional im-
age, a voxel (volume element) is an element resulting from a dis-
cretization of three-dimensional space. A voxel is defined here as
a non-overlapping cube. The set of voxels belonging to voxel per-
son at time t are Vt ¼ fv

*

t;1; v
*

t;2; . . . ; v
*

t;Pg, where the center of the
jth voxel at time t is v

*

t;j ¼ hxj; yj; zjiT. The capture time for each
camera is recorded and the silhouettes, one from each camera, that
are the closest in time are used to build Vt . The construction of vox-
el person from a single camera is the planar extension of the sil-
houette along the direction of the camera viewing angle. Voxels
in the monitored space that are intersected by this planar exten-
sion are identified. The projection procedure involves using the
camera’s intrinsic parameters to estimate pixel rays, and these rays
are tested for intersection with voxels [18]. Voxel person, accord-
ing to camera i (1 6 i 6 C) at time t is Vi

t , whose cardinality, jVi
t j,

is Pi. The planar extensions of voxel person from multiple cameras,
fV1

t ; . . . ;VC
t g, are combined using an operation, such as intersection,

Vt ¼ Kc
i¼1Vi

t , to assemble a more accurate object representation. An
illustration of voxel person construction from two cameras is
shown in Fig. 1. In [18], further processing is performed on voxel
person to remove additional shadows and reflections given a priori
knowledge about the three-dimensional environment. Voxel per-
son’s volume is analyzed to detect error time intervals, and an effi-
cient method for dynamically increasing the resolution (detail) of
voxel person is discussed.

For each image, the goal is the calculation of the membership
degree of voxel person to a set of pre-determined states. This state
information is used to infer activity. An activity is characterized
according to state duration, frequency of state visitation, and state
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transition behavior. The collection of states, where state i is de-
noted by Si, that we have identified for fall recognition include

� Upright (S1): This state is generally characterized by voxel per-
son having a large height, its centroid being at a medium height,
and a high similarity of the ground plane normal with voxel per-
son’s primary orientation. Activities that involve this state are,
for example, standing, walking, and meal preparation.

� On-the-ground (S2): This state is generally characterized by
voxel person having a low height, a low centroid, and a low sim-
ilarity of the ground plane normal with voxel person’s primary
orientation. Example activities include a fall and stretching on
the ground.

� In-between (S3): This state is generally characterized by voxel
person having a medium height, medium centroid, and a non-
identifiable primary orientation or high similarity of the primary
orientation with the ground plane normal. Some example activ-
ities are crouching, tying shoes, reaching down to pick up an
item, sitting in a chair, and even trying to get back up to a stand-
ing stance after falling down.

It is important to note that being on the ground, a state, does
not imply a fall, an activity. The method presented in this paper
is required for reasoning about activity, such as falls. None of the
features above sufficiently identify voxel person’s state the major-
ity of the time. On-the-ground can include variations of the three
features depending on how he or she fell and our interpretation of
the state. In addition, each state is difficult to classify from the fea-
tures alone, which is further complicated by noise resulting from
the segmentation process. Each feature can be used to help deter-
mine a degree to which voxel person is in a particular state.
Descriptions such as a large, medium, or a low amount of each fea-
ture characterize the states. There is no crisp point where the fea-
tures change between states. These factors lead us to use fuzzy
inference to classify voxel person’s present membership in each
state, and ultimately, to recognize human activity.

In [18] we showed how robust statistical features can be ex-
tracted from voxel person for the goal of inferring the state by fuz-
zy logic. Voxel person features include the: centroid, eigen-based
height (more robust to noise than calculating the maximum ob-
served voxel height value), major orientation of the body, and sim-
ilarity of the major orientation with the ground plane normal (a
rough indication of if the individual is standing upright or lying
on the ground). There are 24 rules for each of the three output
states, whose values were empirically determined under the guid-
ance of nurses. We note, however, that these values, and even the
set of rules, can be learned from training data.

3. Temporal linguistic summarization of video

The result of reasoning about the state of voxel person at time is
three membership values corresponding to the confidence of being
upright, in-between, and on-the-ground, l

*

t ¼ hlt;1;lt;2;lt;3i.
Decisions regarding activity can be made at each image from the
state memberships, but the result is too much information. The
objective is to take seconds, minutes, hours, and even days of res-
ident activity to produce succinct linguistic summarizations, such
as ‘‘the resident was preparing lunch in the kitchen for a moderate
amount of time” or ‘‘the resident has fallen in the living room and
is down for a long time”. This is a situation in which less informa-
tion is more useful. Reporting activity for every frame results in
information overload. Linguistic summarization is designed to in-
crease the understanding of the system output, and produce a re-
duced set of salient descriptions that characterizes a time
interval. The linguistic summarizations help in informing nurses,
residents, residents’ families, and other approved individuals about
the general welfare of the resident, and they are the input for the
automatic detection of cognitive or functional decline or abnormal
event detection.

State summarizations are produced through the temporal pro-
cessing of the fuzzy inference results regarding voxel person’s
state. The sequence D ¼ fl

*

1; . . . ;l
*

Ng has N elements, e.g. state

Fig. 1. Voxel person construction. Cameras capture the raw video from different viewpoints, silhouette extraction is performed for each camera, voxel sets are calculated from
the silhouettes for each camera, and the voxel sets are intersected to calculate voxel person.
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decisions for N images. An example plot of the membership out-
puts over time is illustrated in Fig. 2. The camera’s capture rate
was three frames per second and the scenario in Fig. 2 represents
a person falling and not getting back up.

In the case of three states, voxel person can be color coded to
illustrate the state memberships of the resident. The membership
consequent values, all within [0,1], determine the amount of red,
blue, and green in voxel person. Fig. 3 is a sequence that shows
the color coding of voxel person for four frames of the sequence

shown in Fig. 2. Movies illustrating voxel person fall detection
are available for download at http://cirl.missouri.edu/fallrecogni-
tion. These movies include the raw video feed, the silhouettes, col-
or coded voxel person, the accompanying fuzzy rule base outputs,
linguistic summarizations, and fall confidences.

Before D is summarized, elements from D in which the maxi-
mum membership value, lt;max ¼maximumkðlt;kÞ, is not clearly
distinguishable from the other memberships are removed. The
new sequence, D0, has cardinality N0 ¼j D0 j, where N0 6 N. A param-
eter, s1 2 ½0;1� for indeterminate maximum state identification, is
used along with a parameter, s2 2 ½0;1�, for removing elements
where lt,max is below some acceptable membership value (e.g.
the confidence is too low). We experimentally determined s1 to
be 0.1 and s2 to be 0.5. An element l

*

t is removed if

ððlt;max �maximumj–argmaxkðlt;kÞðlt;jÞÞ < s1Þ and ðlt;max > s2Þ:

Removed elements are not used in summarization. Because N0 does
not always equal N, each l

*0
t , an element in D0, has its original posi-

tion in D recorded, I ¼ fi1; . . . ; iN0 g. A maximum state index se-
quence, x ¼ fs1; . . . ; sN0 g, is also constructed, where
st ¼ argmaxkðl0t;kÞ.

Linguistic summarization of the state membership values is the
generation of meaningful human understandable information of
the form

Xc is Si in Pkfor Tj:

The object of interest, voxel person, is denoted as Xcð1 6 c 6 C,
where C is the number of objects being tracked). Here, only a single
resident is tracked, hence C ¼ 1, but it is possible to detect and track
multiple disjoint voxel objects either through labeling regions in the
silhouettes, a computer vision classification task, or through the

Fig. 2. Fuzzy inference outputs plotted for a voxel person fall. The x-axis is time,
measured in frames, and the y-axis is the fuzzy inference outputs. The red curve is
upright, the blue curve is in-between, and the green curve is on-the-ground. The
frame rate was three per second, so the above plot is approximately 23 s of activity.

Fig. 3. Frame 15: upright, frame 35: in-between, frame 38: on-the-ground, frame 40: in-between & On-the-ground (trying to get up). Color-coding of voxel person
according to the membership output values. Voxel persons color is a mixture of the fuzzy rule system outputs. The upright state determines the amount of red, in-between is
green, and on-the-ground is blue.
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analysis of connected and disjoint voxel regions. Voxel person’s ith
state is Si. Important world segments, Pkð1 6 k 6 K, where K is the
number of segments), are recorded. The scene is manually parti-
tioned into K non-overlapping segments. Example locations might
include the living room, kitchen, and other areas that provide a con-
text for subsequent activity analysis. The duration of each linguistic
summarization is Tjð1 6 j 6 J, where J is the number of fuzzy sets
defined over the time domain). The quantity Xc is crisp, while Si

and Tj are fuzzy sets. The apartment location, Pk, can be crisp or fuz-
zy. We use a crisp Pk in this paper. An example linguistic summari-
zation of this form is ‘‘voxel person is on-the-ground in the living
room for a moderate amount of time”.

The filtered sequence D0 contains G summarizations, which are
found by partitioning the maximum state index sequence x. Indi-
ces where si–siþ1, for 1 6 i 6 ðN0 � 1Þ, are recorded,
U ¼ fu1; . . . ; uG�1g when G > 1 and U ¼ ; when G ¼ 1. Indices 1
and N0 are added to U, hence U0 is denoted by f1;U;N0g, where
j U0 j¼ Gþ 1, and the gth summary ð1 6 g 6 GÞ, Sumg , is the se-
quence from u0g to u0gþ1, where u0g 2 U0. Since the goal is the recog-
nition of elderly activity, specifically falls, we generate summaries
representing sufficient time periods of consecutive state occu-
pancy. Our goal is not the recognition of high frequency activity
occurring in a fraction of a second. These periods are possibly
due to incorrect silhouette segmentation, inaccuracies in fuzzy
inference, or high frequency activity that is not related to fall
detection. Elders do not generally perform extremely quick activi-
ties, such as being on the ground for only one second. Any Sumg ,
where j Sumg j< s3 is removed. The parameter s3 was determined
to be F�2, where F is the number of frames captured per second,
F ¼ 3 in our system, thus any summary that is less than 2 s in dura-
tion is removed. Also, any Sumg whose sequence of image indices is
not consecutive, ðiu0gþk þ 1Þ–iu0gþðkþ1Þ, where 0 6 k 6 ðjSumg j � 2Þ, is
removed. This removes segments that were broken up by a brief
time interval where there was another state with a larger member-
ship value or segments that were broken up by a brief time interval
of too low a state membership confidence. The result of these two
filters is a new sequence that has G0 summarizations,
fSum01; . . . ; Sum0G0 g. The first stage of automated linguistic summari-
zation for the sequence shown in Fig. 2 is

Derek is upright in the laboratory for 11 s
Derek is on-the-ground in the laboratory for 11.3 s.

The individual’s name, Derek, is included in the linguistic sum-
marization. This personalizes the summarizations, increasing read-
ability for an end user or health care individual interested in
analyzing the activity of the resident. The location is determined
by looking at voxel person’s ðx; yÞposition and finding which scene
segment he or she is presently in.

The final step in summarization involves the generation of tem-
poral linguistic descriptions. We use a single linguistic variable
over the time domain that has the following terms, specified in sec-
onds, with corresponding trapezoidal membership functions:
brief = [�1 1 1 2], short = [1 5 10 15], moderate = [10 120 480
720], and long = [480 900 86400 86400]. These fuzzy sets were
determined by nurses to make sure that they reflect older adults,
the target group for this system. The full precision time value is
not discarded by the system, it is just not included as part of the
linguistic summary. The nurses fuzzy set ‘long’ occupies the major-
ity of the time domain. This can result in problems as it relates to
the sampling rate for a domain in inference. Long is redefined to be
[480 900 900 901], the minimum of the time value and 900 is cal-
culated, and a large sample rate is used during inference. The sum-
marization above has its time components converted into the
appropriate fuzzy terms to linguistically report the time durations.
Each term and its respective membership degree can be reported.
However, for the sake of display, only the term with the maximum

confidence is presently being reported. The final summarization for
the fuzzy rule base output shown in Fig. 2 is therefore

Derek is upright in the laboratory for a moderate amount of
time
Derek is on-the-ground in the laboratory for a moderate
amount of time.

Thus, we demonstrated a method for generating linguistic sum-
marizations of the form Xc is Si in Pk for Tj for fall detection. A gen-
eralization of this form is Xc is S in P for T, where S, P, and T are now
linguistic variables, not a single fuzzy set. If desired, the member-
ship degrees with respect to each fuzzy set for each linguistic var-
iable can be utilized by an activity recognition system. In the next
section, we present a higher level reasoning module that processes
information from linguistic summarizations of the form Xc is St in
Pk for Tj.

4. Fuzzy logic for fall detection

In this section, we describe a hierarchical system of fuzzy infer-
ence for activity reasoning and report our baseline system for fall
detection. The variables and rules in our expert system are not
automatically learned from the video data; they are manually
determined by engineers and nurses at the University of Missouri.
Linguistic variables were identified by the engineers and validated
by the nurses. Nurses also validated the existing rules constructed
by the engineers and created new rules based on their direct
knowledge and experience with falls of older adults.

As already discussed, a hierarchy of fuzzy logic systems is used
to recognize human activity. The first level was described above,
which involves acquiring the confidences in states. The next level
of fuzzy logic performs activity recognition from features com-
puted from linguistic summaries. This second layer uses domain
expert knowledge about activities to produce a confidence in the
occurrence of an activity, which we were unable to reliably pro-
duce using HMMs. Rules allow for the recognition of common per-
formances of an activity, as well as the ability to model special
cases, which are extremely difficult to do with an HMM. This flex-
ible framework also allows for rules to be added, deleted, or mod-
ified to fit each particular resident based on knowledge about their
typical daily activities, physical status, cognitive status, and age. In
addition, our approach is not restricted with respect to the amount
of time that it can include to evaluate activity, which is not the case
for the typical standard first-order HMM with Markov and i.i.d.
assumptions. Many linguistic summarizations can be used, giving
rise to variable amounts of time, when evaluating rules. This makes
it possible to enforce longer-term specific performances of activi-
ties. Fig. 4 is our activity recognition framework.

Linguistic summarization results in a reduction of information
in a format that is understandable by a human. However, while this
information is useful to a human observer, our goal is the automa-
tion of reasoning about activity. To achieve this goal, features are
extracted from linguistic summarizations, which in return are used
by a fuzzy inference system to recognize activity. An advantage in
generating linguistic summarizations is that they are the trigger to
look for a fall once an on-the-ground is observed. They are also a
reduced expression of the original higher sampled video informa-
tion that typically results in long observation sequences as inputs
to HMMs. The check for a fall is repeated at a user specified interval
rate during an on-the-ground summary (here, every 5 s), until a
fall is detected or the resident makes it out of the on-the-ground
state.

There is a single linguistic output variable that reflects the con-
fidence that a fall has occurred. This output variable is comprised
of the terms low = [�0.5 �0.2 0.2 0.5], medium = [0.1 0.5 0.5 0.9],
and high = [0.5 0.8 1.2 1.5]. The inputs to the second level in the
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fuzzy logic hierarchy, for a single summary, include: the average
state membership, time duration, confidence in a quick change in
voxel person’s speed before the start of the summary, voxel per-
son’s average speed, and the confidence in recent oscillating
behavior between the on-the-ground and in-between states.

The first feature is the average membership for the state with
the maximum membership during Sum0g . The average membership
for state i, Si, in Sum0g is

pi;Sum0g
¼ 1
jSum0g j

 ! XjSum0g j�1

j¼0

ltstartþj;i;

where tstart is the first index in Sum0g . The fuzzy sets for the average
membership are low = [�0.5 �0.2 0.2 0.5], medium = [0.1 0.5 0.5
0.9], and high = [0.5 0.8 1.2 1.5].

The detection of a large recent change in voxel person’s speed
involves the analysis of voxel persons centroid,
c
*

t ¼ ð1=PÞ
PP

j¼1 v
*

t;j. The motion vector between time t and t þ 1 is
m
*

t!tþ1 ¼ c
*

tþ1 � c
*

t . The magnitude of the motion vector, km
*

t!tþ1k,
is an indicator of the person’s speed. A window of size W of mag-
nitudes of motion vectors is analyzed before an on-the-ground
summary, fkm

*

t!W!t�Wþ1k; . . . ; km
*

t�1!tkg. The parameter W was
experimentally determined to be 40 (approximately 13 s). Ele-
ments in this window are first smoothed with a mean filter of size
5, km

* 0
t!tþ1k ¼ ð1=5Þ

P2
j¼�2km

*

tþj!tþjþ1k. The derivative is then calcu-
lated using forward finite difference, rkm* 0t!tþ1k ¼ km

* 0
tþ1!tþ2k�

km
* 0

t!tþ1k. The detection of a quick change involves identifying a rel-
atively large change in the sequence rkm* 0t!tþ1k in the second half
of the window. The maximum rkm* 0t!tþ1k from the first half of the
window, sdhalf1 ¼maximumðfmaximumiðrkm

* 0
t�Wþi!t�Wþiþ1kÞ;0gÞ,

where i ¼ f0; . . . ; bW=2c � 1g, and the maximum in the second
half of the window, sdhalf2 ¼ maximumðfmaximumiðrk
m
* 0

t�Wþi!t�Wþiþ1kÞ;0gÞ, where i ¼ fbW=2c; . . . ;W � 1g, are calcu-
lated. The feature is ðsdhalf2=sdhalf1Þ and the corresponding fuzzy
sets are low = [0 1 1 1.3], medium = [0.8 1.2 1.2 1.6], and high = [1.5

2 100 102]. Fig. 5 illustrates this procedure for the sequence shown
in Fig. 2.

Voxel person’s average speed during Sum0g is

uSum0g
¼ 1
ðjSum0g j � 1Þ

 ! XðjSum0g j�2Þ

j¼0

km
*

tstartþj!tstartþjþ1k;

where tstart is the index of the first motion vector magnitude in
Sum0g . The fuzzy sets for on-the-ground motion are low = [�0.2 0
0 0.2] and high = [0.1 0.4 100 102].

The measure of recent oscillating behavior between on-the-
ground and in-between, which is useful for detecting if a resident
has fallen and is trying to make it back up, involves searching the
sequence of summarizations backwards from the current on-the-
ground summary until the end of a moderate amount of time,
where moderate is the fuzzy set determined by the nurses. The
fourth trapezoid value, d, the set end point, for moderate is used
to determine when to terminate the search. The number of times
that the system changed between on-the-ground and in-between
is counted. If an upright state is encountered, the counting stops.
The fuzzy sets for recent oscillating behavior between the on-
the-ground and in-between states are low = [�2 0 2 4], med-
ium = [1 3 5 7], and high = [4 6 8 10]. The minimum of the recent
oscillating state behavior count and 8 is calculated. The nurses
indicated that anything over 8 is high, so taking the minimum
helps avoid any consequence domain sampling issues that could
arise if the set ‘high’ was extended outwards with respect to the
points c and d. The following rules, reported in Table 1, are cur-
rently used to detect a fall.

5. Experiments and results

The reliable recognition of different ways in which elders fall is
the subject of analysis in this section. Successfully recognized fall
types are highlighted and false alarms are discussed. All data was

Fig. 4. Activity recognition framework, which utilizes a hierarchy of fuzzy logic based on voxel person representation. The first level is reasoning about the state of the
individual. Linguistic summarizations are produced and fuzzy logic is used again to reason about human activity.
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captured in the Computational Intelligence Laboratory at the Uni-
versity of Missouri. We do not have any elderly fall data and cannot
acquire any because of the age of the individuals and the risk of in-
jury. Because of this, fall data is captured in our lab using students
as subjects. As mentioned above, movies illustrating the following
sequences and our processing of them can be found at http://
cirl.missouri.edu/fallrecognition.

A total of 19 fall sequences were studied. The majority of se-
quences presented in this paper are the same sequences used in
our voxel person construction and fuzzy logic for state classifica-
tion paper [18]. These two bodies of work are interconnected, so
processing the same data advances the previous paper and an-
swers any questions regarding the exact information acquired
and processed below. The camera capture rate was three frames
per second and a total of 6713 frames, approximately 37 min, were

captured. The subjects walked around the room, stood still, knelt
down, fell, sometimes went slow to the ground and stretched,
and sat on the couch and the chair (example images are shown
in Fig. 6). Kneeling, lying on the couch, stretching on the ground,
and sitting on the chair with feet on the coffee table were included
to show some common activities that might appear as a fall. A vari-
ety of falls were performed including forward, backwards, and to
the side. Fall scenarios also included falls that lasted for only a cou-
ple of seconds after which the person got back up, falls where the
person stayed down on the ground but attempted to get back up,
and falls where the person simulated a severe injury and laid on
the ground motionless.

We begin by presenting approximately 11 min of video analysis
(2042 frames) in Fig. 7. The fuzzy rule base outputs are shown, fall
time points are manually identified to determine the success of our

Fig. 5. Detection of a large recent change in voxel person’s speed. (a) Motion vector magnitudes are computed, (b) a fixed size window, placed directly before the start of the
summarization, is smoothed with a mean filter, and (c) the maximum of the derivative of the filtered motion vector magnitudes is found in the first and second halves of the
window. The feature is the ratio of the two maximum values.

Table 1
Fuzzy rules for activity analysis

Rule On the ground Time duration Change in speed Motion Oscillating Fall

1 If High Long Then High
2 If High Moderate High Then High
3 If High Moderate High Then High
4 If High Moderate Low Then High
5 If High Moderate High Then High
6 If High Short High Then Medium
7 If High Short High Then Medium
8 If High Short Medium Then Medium
9 If Medium Moderate High Low Then High
10 If Medium Moderate Low Then High
11 If Medium Short High Then Medium
12 If Medium Short High Then High
13 If Medium Short Medium Then Medium
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automated reasoning, and fall confidences are reported. A total of
38 summaries were produced, too many to display in the paper;
however, a drastic reduction from 2042 individual frame-by-frame
decisions. Instead, we present the fall confidences associated with
each on-the-ground linguistic summarization.

Fall confidence during each of the on-the-ground linguistic
summarizations:

On-the-ground 1 (Fall 1): confidence is 0.50
On-the-ground 2 (Fall 2): confidence is 1.00
On-the-ground 3 (Fall 3): confidence is 0.50
On-the-ground 4 (Fall 3): confidence is 0.50
On-the-ground 5 (Fall 3): confidence is 0.67
On-the-ground 6 (Fall 3): confidence is 0.81
On-the-ground 7 (Fall 4): confidence is 0.50
On-the-ground 8 (Fall 4): confidence is 0.50.

The first fall in Fig. 7 is where the person fell for a short amount
of time and then was able to make it to an upright state. Nurses

have indicated that they do not want this to generate an alert,
but they would like a daily report detailing the number of times
that the resident was on the ground during a day, when each oc-
curred, the fall confidences, and a movie of voxel person during
that time period, or at least a few frames, to look at later. The stor-
age of voxel person, not the original image, helps in the preserva-
tion of privacy.

Generating a fall alert involves identifying a confidence thresh-
old s4. An alert is triggered if a fall confidence is greater than s4. A
significant advantage of using fuzzy logic for the inference of activ-
ity is that can be interpreted. This makes it possible for a human to
determine a location along the output domain based on a member-
ship degree of specific fuzzy set. We use a s4 of 0.7, which is the
consequent domain location corresponding to the left most point
for an alpha cut of 0.6 in the set ‘high’ (e.g. high fall confidence).
This method is more reliable than attempting to pick a threshold
for the likelihood of a model occurring in an HMM, or a ratio of
the top two most likely models, which does not necessarily tell

Fig. 7. Approximately 11 min of video analysis, 2042 frames total. A total of 4 falls occurred and 38 linguistic summarizations were produced. The upright membership is
shown in red, in-between membership is shown in blue, and on-the-ground is shown in green. Dashed vertical purple lines are the manually inserted moments where a fall
occurred.

Fig. 6. Example images and their corresponding silhouettes from the fall data set. Lying on the couch and sitting on the chair with feet up activities, which could be
misinterpreted as a fall, are not recognized as a fall in our system, an advantage of rule-based reasoning and knowledge about three-dimensional voxel person.
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us if the activity was even performed. The first fall shown in Fig. 7
does not result in an alert, but it is listed in the daily activity report.
Fig. 8 shows a shorter time duration performance of this type of
fall. It is easier to view the behavior of the membership functions
for this shorter time period.

The second fall in Fig. 7 is where the person fell for a moderate
amount of time, a high sudden change in speed was detected, fol-
lowed by a low amount of motion during the on-the-ground state.
This fall is similar to the fall presented in Fig. 2, only longer in time.
This fall resulted in a confidence of 1, which would trigger an alert
and help would be dispatched.

The third fall in Fig. 7 involves the resident falling and unsuc-
cessfully attempting to get back to an upright state. There were
four on-the-ground summarizations produced for this third fall,
and the respective fall confidences were: 0.5, 0.5, 0.67, and 0.81.
As the person kept trying to get back up, the number of oscillations
increased, which resulted in a greater fall confidence over time. An
alert would be triggered for the fourth on-the-ground summariza-
tion in this case. Fig. 9 is a shorter time duration sequence that
illustrates this general ‘‘trying to get back up” behavior. However,

in this sequence the person never makes it far enough up to switch
between the on-the-ground and the in-between states.

The fourth fall in Fig. 7 is also of this ‘‘trying to get back up”
type. In this particular case the person was able to make it to an
upright state in an acceptable amount of time. The result was a
confidence of 0.5, which is less than s4, so no alert is generated.

Table 2 is the confusion matrix for the classification of falls with
respect to the on-the-ground summarizations for the 19 fall se-
quences. All falls in the video sequences were identified by a hu-
man and their start and end points were recorded.

The system correctly classified all of the actual falls and of the
non-fall activities were incorrectly classified as a fall. This table
only measures classification rates given an on-the-ground sum-
mary. There were no situations in which a fall occurred and an
on-the-ground summary was not produced. This is an advantage
of our approach, the identification of moments in which to evalu-
ate the confidence in a fall. Non-fall activity classification rates
would be much better if all linguistic summarizations, not just
on-the-ground, were included.

The first false alarm is a situation in which the subject was on
the ground and exercising for a moderate amount of time (a result
of the firing of rule 3). Exercising was not factored into the design
of this baseline system. Many of the rules will trigger an alert if an
individual is on the ground exercising, performing leg lifts for
example. However, if a resident is known to be active, the rules
triggering a fall can be removed, or if they exercise at a predeter-
mined time of day the rules can be disabled for that period. Addi-
tional pose information and features from voxel person can be
extracted and rules can be added to take into account exercise
for active seniors. The flexibility of the design of the features and
rules allows us to minimize false alarms if we know the routines
and physical capabilities of a resident.

The second false alarm is a product of the fuzzy sets and rules,
referring to the fact that they were hand designed and not learned
from training data. There was one case in which the subject went
to the ground, resulting in the detection of a quick change in speed,
a high confidence in on-the-ground was inferred, but a very low
confidence in the moderate set was observed. Only rule 2 had an
antecedent strength higher than zero. The result is a very low rule
antecedent strength firing, because of the very low confidence in
the moderate set, resulting in a low activation of the high confi-
dence fuzzy set. However, the activation of only the high fuzzy
set to any degree results in a defuzzified value above the threshold
s4. The problem is that there was no other rules fired and the rule
antecedent strength was not taken into consideration. To address
this, we are adopting different consequent membership functions
that better take into account the rule antecedent firing strength,
referring to where the centroid is calculated with respect to the
rule firing strength, such as the non-linear spline-based z-shaped
and s-shaped membership functions. A z-shaped membership
function is defined as

lAðxÞ ¼

1 x 6 a

1� 2 x�a
b�a

� �2 a 6 x 6 aþb
2

2 b�x
b�a

� �2 aþb
2 6 x 6 b

0 x P b

8>>>><
>>>>:

;

Fig. 8. Fifty-eight frames (approximately 19 s) from a sequence where the person
fell and was able to get back up. Red is upright, blue is in-between, and green is on-
the-ground.

Fig. 9. Sixty-three frames (approximately 21 s) where the person fell and tried to
get back up three times. Red is upright, blue is in-between, and green is on-the-
ground.

Table 2
Confusion matrix for classification of falls with respect to on-the-ground
summarizations

Ground truth for falls

Fall activity
(14 falls)

Non-fall activity
(32 non-falls)

Systems fall decision
(fall confidence > s4)

Fall activity 14
14 ¼ 1 2

32 ¼ 0:0625
Non-fall activity 0

14 ¼ 0 30
32 ¼ 0:9375
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while an s-shaped function is just a z-shaped function in the oppo-
site direction. These function names are based on their shapes,
hence why the s-shaped function is the z-shaped function going
in the opposite direction. The parameters fa; bg and the sampling
domain interval can be selected to shift the centroid towards 1
for the ‘high’ set when the rule antecedent firing strength is high,
and shift the centroid towards 0.5 when the rule antecedent firing
strength is low.

6. Conclusions

We have demonstrated a flexible framework for detecting
human activity, in particular, falls, with a focus on older adults.
This approach results in human understandable information and
confidences regarding activities for the sake of monitoring the
‘‘well-being” of a resident. Silhouettes from multiple cameras
are used to build a three-dimensional approximation of the hu-
man, i.e. voxel person. Features are extracted from voxel person
and used along with fuzzy inference to determine the state of
the resident. The resulting fuzzy rule base outputs are then
temporally processed and used to generate temporal linguistic
summarizations. Features from these linguistic summarizations
are the input to another fuzzy inference system for reasoning
about human activity. Nurse gerontology experts assisted in
the design of the rules for fall detection. It is the nurses’ expe-
rience that helps us relate this work to the ways in which older
adults fall.

7. Future work

One extension to this work involves extracting richer linguistic
summarizations from the fuzzy rule base outputs. There is a fair
amount of information that our present approach discards, only
accepting moments in which the maximum membership is clearly
distinguishable. These moments might prove to be meaningful for
a better assessment of the ‘‘well-being” of a resident. Many of the
system parameters used in this work are based on empirical obser-
vations. It is important that we use training data in the future to
determine the fuzzy sets, fuzzy rules, and thresholds. This will re-
quire a database of activity captured from the elderly and assis-
tance in interpreting the data by nurses and other caregivers. We
have just captured a larger dataset of falls using stunt actors. To
make sure that the actors performed falls in a similar fashion to
the way that elders fall, nurses coached the stunt actors.

In addition, the in-between state proposed in this work is
rather broad. It is used in this context for detecting falls, but we
plan on showing the extendable nature of this framework by the
addition of more rules for state classification and more rules for
activity monitoring. The detection of falls is a form of short-term
monitoring, but the work presented here is in no way limited to
short-term activity recognition. Hours, days, weeks, and even
months worth of data will be collected and summarized based
on the work presented.

Nurses at the University of Missouri assisted us in determining
the rules for fall detection, but there is still much work to be done.
We are currently outlining additional common types of falls for the
elderly, and the states, fuzzy sets, and rules are being expanded in
order to detect these various types of falls. For example, nurses ex-
press that many older adults fall after sitting for a period of time,
getting up to their feet and being light headed or losing their bal-
ance. In addition, we are looking at common causes for false
alarms. The rule set will be modified to take these cases into
consideration.
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