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Abstract—Video is a rich source of information that can be 

used to passively monitor the activity of elders.  The amount 

of information contained in video is significantly greater than 

other sensing technologies such as RFID tags and motion 

sensors.  Privacy of residents is preserved by not using the 

raw video, but instead,  extracting binary silhouette maps, 

which represent the pixels a person occupies in an image.  

Silhouettes acquired from multiple cameras viewing the same 

scene are used to build a three-dimensional object whose 

activity is linguistically summarized for activity monitoring.  

These linguistic summarizations are used for abnormal event 

detection, specifically for the automated detection of falls.  In 

this paper, we present three measures for system performance 

evaluation and discuss successes and difficulties in video-

based human activity recognition of falls. 

I. INTRODUCTION 

e are researching passive monitoring technologies 

for assisting elders with “aging in place”.  This 

includes adverse event detection from video for activities 

such as falls [1][2].  Privacy is preserved by not using the 

raw video, but extracting binary silhouette maps, which 

represent the pixels a person occupies in an image.  Focus 

groups at the “aging in place” facility of residential 

apartments known as TigerPlace [3] indicate that elderly 

residents are willing to consider silhouette-based images 

for abnormal event detection such as falls [4].   

A reliable video-based monitoring system must be able 

to discriminate between similar appearing activities, such 

as a subject on the floor stretching or sleeping versus 

having fallen.  While these tasks are often relatively simple 

for a human, they are extremely difficult for an automated 

system.  This is a high level computer vision and image 

understanding task that requires information about the 

context, temporal activity, and even inference about the 

mental and/or physical state of a subject.  We have 

designed a soft computing approach to human activity 

monitoring [5][2], in which knowledge is explicit and 

linguistic.  Rules for activity monitoring can be inserted, 

removed, and modified by domain experts, such as nurses, 

based on cognitive and/or physical information regarding 

each specific resident.  In addition, the system produces 
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linguistically summarized information in a natural 

language format that caregivers can utilize.   

In an eldercare context, false alarms can be expensive.  

A false alarm may result in an alert being generated, such 

as a fall, requiring the intervention of a caregiver.  Too 

many false alarms could result in a loss of trust, or worse, 

loss of use of the system.  However, missing a single fall is 

the worst case scenario.  Identifying an acceptable false 

alarm rate and understanding the conditions in which many 

false alarms occur is of vital use for the long term success 

of an automated system.  In this paper, we identify and 

evaluate three measures for the assessment of various types 

of information and fall classification in our video system.     

Martin et al. [6] presented a soft computing approach to 

monitoring the “well-being” of elders over long time 

periods from non-video sensors.  Procedures for 

interpreting firings from sensors into fuzzy summaries 

were presented.  These summaries assist in characterizing 

a resident‟s trends and aid in answering queries about 

deviations from patterns, such as “has the occupant‟s sleep 

pattern changed significantly in the past few months”. 

Thome and Miguet demonstrated a fall detection 

procedure that uses Hierarchical Hidden Markov Models 

(HHMM) [7].  The HHMM is hand designed and operates 

on an observation sequence of rectified angles.  Johnson 

and Sixsmith [8] used an infrared array technology to 

acquire a low resolution thermal image of the resident and 

they track the human using an elliptical-contour gradient-

tracking scheme.  Falls were detected using a neural 

network that took the vertical velocity of the person as 

input.  Their fall classification results were poor, only 

capturing around one-third of all falls.  However, no non-

fall scenarios resulted in a fall alert.     

II. LINGUISTIC SUMMARIZATION OF ACTIVITY  

Our first step in human activity analysis is silhouette 

extraction (shown in figure 1).  This is an image 

processing and computer vision classification task, in 

which the objective is to discover the pixels in the current 

image that belong to the human.  This is not a simple task 

and has been the subject of much research over the years 

[9][10].  Objects move in a scene, illumination changes 

occur, and shadows and other phenomenon such as 

reflections further complicate automated extraction.  Our 

silhouette extraction system is adaptive and fuses texture 

and color information [11].  The camera is assumed to be 

stationary and a background model is constructed.  As 

each new image is acquired, features are extracted and 

locations that do not belong to the background are 

identified and labeled as silhouette.     
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Fig. 1: Fall shown from two cameras monitoring the same scene.  White 

regions in the bottom two images, i.e. the silhouettes, are the human. 

 

In [5] we presented a robust method for the construction 

of a three-dimensional object, specifically a representation 

of the human called voxel person, from the back projection 

of silhouettes from multiple cameras viewing the same 

scene.  The environment is first partitioned into discrete 

regions, typically cubes, called volume elements (voxels).  

Each camera builds a list of voxels that intersect with its 

viewing volume, and the pixels from which a particular 

voxel is viewable are recorded.  Corresponding silhouettes, 

those with the closest time stamps, are acquired.  For each 

camera a new list is constructed, i.e. the set of all voxels in 

foreground regions, the silhouette.  The next step is the 

intersection of these new voxel lists, which results in voxel 

person.  The procedure is illustrated in figure 2. 
 

 
 

Fig. 2: Back projection of two-dimensional image plane silhouettes in 

three-dimensional space for voxel person construction.   

 

We use fuzzy logic for human activity analysis.  Fuzzy 

set theory, introduced by Lotfi A. Zadeh in 1965, is an 

extension of classical set theory [12].  One of the more 

well-known branches of fuzzy set theory is fuzzy logic, 

introduced by Zadeh in 1973 [13].  Fuzzy logic is a 

powerful framework for performing automated reasoning.  

An inference engine operates on rules that are structured in 

an IF-THEN format.  The IF part of the rule is called the 

antecedent, while the THEN part of the rule is called the 

consequent.  Rules are constructed from linguistic 

variables.  These variables take on the fuzzy values or 

fuzzy terms that are represented as words and modeled as 

fuzzy subsets of an appropriate domain.  An example is the 

fuzzy linguistic variable height of voxel person‟s centroid, 

a feature that is tracked and helps with determining when 

the subject is on the ground.  This variable can assume the 

terms low, medium, and high. 

Our first step in monitoring human activity from video 

involves acquiring confidences in the states of voxel 

person (e.g., upright, on-the-ground), a frame-by-frame 

decision process [5].  The current set of states (level one 

quantities that are later used to recognize activity) include: 

on-the-ground, upright, in-between, on-the-couch, and on-

the-chair [5][14], as described below.  

 
Upright: This state is generally characterized by voxel person 

having a large height, his centroid being at a medium height, and a 

high similarity of the ground plane normal with voxel person‟s primary 

orientation.  Activities that involve this state are, for example, 

standing, walking, and meal preparation. 

 

On-the-ground: This state is generally characterized by voxel 

person having a low height, a low centroid, and a low similarity of the 

ground plane normal with voxel person‟s primary orientation.  

Example activities include a fall and stretching on the ground. 

 

In-between: This state is generally characterized by voxel person 

having a medium height, medium centroid, and a non-identifiable 

primary orientation or high similarity of the primary orientation with 

the ground plane normal.  Some example activities are crouching, 

tying shoes, reaching down to pick up an item, sitting in a chair, and 

even trying to get back up to a standing stance after falling down.  
 
On-the-chair: This state is characterized by voxel person being on a 

chair.  Activities that involve this state are, for example, sitting on the 

chair and/or lying on the chair. 

 

On-the-couch: This state is more specific than on-the-chair.  It is 

generally characterized by voxel person being on a couch, having a 

low similarity with the ground plane normal, a high centroid height, 

and a high minimum height 

 

Our next step is linguistic summarization of this 

information and the recognition of specific activities, e.g., 

falls [2].  This second stage uses domain expert knowledge 

regarding activities to produce a confidence in the 

occurrence of an activity.  Rules allow for the recognition 

of common performances of an activity, as well as the 

ability to model special cases.  This framework also allows 

for rules to be added, deleted, or modified to fit each 

particular resident based on knowledge about their typical 

daily activities, physical status, cognitive status, and age.  

Our rules can evaluate as many linguistic summarizations 

as necessary, looking as far back in time as desired, 

making it possible to enforce longer-term specific 

performances of activities.  Figure 3 illustrates our activity 

recognition framework. 

 



  

 
 

Fig. 3: Activity recognition framework, which utilizes a hierarchy of 

fuzzy logic systems based on voxel person.  The first level is reasoning 

about the state of the individual.  Linguistic summarizations are 

produced and fuzzy logic is used again to reason about human activity. 
 

Decisions regarding the current activity can be made at 

each time step, but the result is too much information.  Our 

goal is to linguistically summarize the temporal activity of 

voxel person.  The objective is to take seconds, minutes, 

hours, and even days of resident activity and produce 

temporal linguistic summarizations, such as “the resident 

has fallen in the living room for a long time” or “the 

resident made and ate lunch shortly after noon”.  This is a 

situation in which less detail is more meaningful.  

Reporting activity for every frame results in information 

overload.  Linguistic summarization is designed to increase 

the understanding of the system output, reporting a 

reduced set of conditions that characterizes a time interval, 

and temporally describes the duration that voxel person 

was in a state or performed a particular activity.  The 

linguistic summarizations of voxel person‟s activity can 

help in informing nurses, residents, residents‟ families, and 

other approved individuals about the general welfare of the 

resident, as well as assist in an automated or manual form 

of determining potential cognitive or functional decline. 

III. FALL DETECTION 

All data was captured in the Computational Intelligence 

Laboratory at the University of Missouri-Columbia.  We 

do not have any elderly fall data and cannot acquire any 

because of the age of the individuals and the risk of injury.  

Because of this, fall data was captured in our lab using 

students as subjects.  The rule base for recognizing falls, 

validated by nurses, can be found in [2].  Features, 

described in [2][5][14], are extracted from voxel person 

and used in the rule base.  Example features used to reason 

about the state of voxel person include the height 

(indicates if the subject is on the ground) and a quick 

recent change in acceleration (looking for a quick change 

in speed at the beginning of a fall).  Figure 4 shows these 

two features for an example fall sequence and figure 5 

shows the automated decision making output.  

  
 

Fig. 4: Two features used to monitor the activity of voxel person.  (left) 

The statistical approximation of voxel person‟s height feature, which 

indicates whether the subject is on the ground or upright. (right) The 

change in acceleration of voxel person feature, which is one source of 

information that indicates a potential fall. 

 

 
 

 

Fig. 5: Activity sequence, same as figure 4, which consists of 3650 

frames (approximately 12 minutes using a capture rate of 5 fps).  The 

output of reasoning about the state of voxel person (level one of fuzzy 

inference) is plotted over the time/frame domain.  Labels indicate where 

the second level of fuzzy inference classified a fall.  This sequence 

contained three falls, all of which were correctly recognized.   

IV. SYSTEM EVALUATION METRICS 

The data set analyzed in this paper was manually hand 

segmented to acquire a ground truth for comparison 

against the automated systems results.  Only the activities 

that the system tracks were hand segmented.  The 

beginning and ending frames for each activity are 

identified.  There are multiple ways to evaluate the 

performance of the system given the ground truth and the 

outputs at each level of fuzzy inference.  The three metrics 

identified and evaluated here for this data set are:   

 

Metric 1: Matching between the frame-by-frame state 

decisions (according to the fuzzy state with the 

maximum membership value at each frame in the first 

level of fuzzy inference) and the frame-by-frame ground 

truth labels.  The human indicated the start and end time 

frames and all frames in this interval are automatically 

assigned the same label.   
 

Metric 2: Matching between linguistic summarizations 

produced by processing the first level of fuzzy inference 

results and the hand annotated data.  This measures how 

successful the summarization system is in terms of 

correspondence with what a human produced.  

However, this metric does not indicate how much the 

system summaries and the ground truth intervals 

overlap.  When the first and second metric are analyzed 



  

together, an understanding of how much the linguistic 

summarization and ground truth intervals overlap is 

possible.  This is important because falls need to be 

recognized in a timely manner.  For this metric, a zero 

score is the best.   
 

Metric 3: Matching between the fall detection produced 

by the second level of inference and when a fall 

occurred, as noted by the manual segmentation.  This is 

a measure evaluating the success of the second level of 

fuzzy inference.   

V. RESULTS 

The fall data set consists of eighteen sequences.  The 

camera capture rate was 3 fps and a total of 5512 frames 

were captured (approximately 30 minutes).  The two 

subjects walked around the room, stood still, kneeled, fell, 

and sat on the couch and the chair (example images are 

shown in figures 6 and 7).  Kneeling, lying on the couch, 

and sitting on the chair with feet on a coffee table were 

included to show that some common activities that might 

appear as a fall are not misclassified by our system 

(examples in figure 8).  Falls were performed differently, 

meaning that sometimes the person fell forward, 

sometimes backwards, and also to the side.  Fall scenarios 

also included falls that lasted for only a couple of seconds 

after which the person got back up, falls where the person 

stayed down on the ground but attempted to get back up, 

and falls where the person simulated a severe injury and 

laid on the ground motionless.   

 

  
 

  
 

 

Fig. 6: Walking, kneeling, and sitting on the couch and chair. 
 

 

  
 

  
 

Fig. 7: Walking, falling, and stretching. 
 

  
 

  
 

  
 

  
 

Fig. 8: Lying on the couch and sitting on the chair with feet up activities, 

which could be misinterpreted as a fall, are not recognized as a fall in our 

system.  Rules for falls and knowledge about three-dimensional voxel 

person helps with the elimination of many false alarms.   
 

Metric 1, table 1, shows the evaluation of the system 

from the standpoint of frame-by-frame state decisions.   

 

Table 1. Comparison of frame-by-frame state decisions 

between the system, s, and the ground truth, t, (Metric 1).   

 

 
 

The results in table 1 are shown as percentages and they 

indicate the frequency at which our system agrees or 

disagrees with the human‟s labels (each row sums to one, 

within numerical precision of the displayed numbers).  The 

results show that the system captures nearly all of the on-

the-chair and all of the on-the-couch states (those activities 

that mostly depend on the spatial location in the room of 

voxel person and a static object).  These activities still 

involve reasoning about the pose of the subject, but the 

position in the room contexutalizes the activity and 

simplifies identification.  A room is segmented by a human 

into regions that are used to help track and reason about 

activity.  Figure 9 shows an example apartment 

segmentation and illustrates how we track voxel person 

interacting with scene regions.   

 



  

  
 

 

Fig. 9: A room is segmented by a human into different regions and large 

static objects are identified.  Voxel person is projected onto the x-y plane 

and a measure of region overlap is produced for tracking [14]. 
   

As more activities are identified for the couch and chair, 

the rates will most likely decrease some, but these tasks are 

clearly distinguishable from the majority of activities that 

the subject performs at various locations in the apartment. 

The upright state has good classification (82.7%); 

however, some time intervals were called on-the-ground 

(16.9%).  These situtations are due to two factors.  The 

first and largest factor involves time intervals in which the 

subject moved into the far bounds of one or both of the 

cameras and the viewing angles make object reconstruction 

difficult.  To address this, we are working on fuzzifying 

the feature extraction process to take into account factors 

such as the viewing ray angles and the distance of a voxel 

to the camera focal plane.  The second problem resides in 

the fuzzy sets used to build the rules.  These sets were 

empirically defined by humans.  Some situtations in the 

feature extraction process do not perfectly fit the 

empirically determined fuzzy sets.  We will address this 

problem in the future by learning the fuzzy sets from 

training data and comparing this to the nurse‟s system. 

The on-the-ground state was recognized in 97.6% of the 

image frames, which is critical for fall recognition.  The in-

between state had little similiarity with on-the-ground, but 

it was essentially similar to upright.  This primarily has to 

do with the fuzzy sets used to classify that state.  The 

automated system‟s fuzzy sets do not coorespond with the 

human‟s assesment of in-between.  The human was quick 

to call someone in-between, while the fuzzy sets were 

designed to really detect the time intervals when someone 

was half way between upright and on-the-ground.     

Table 2 is the system evaluation results according to 

Metric 2, which compares the linguistic summarizations to 

the ground truth labels. 

 

Table 2. Comparison of linguistic summarizations, s, to 

ground truth labels, t, (Metric 2), computed as s-t.   

 

 
 

 Negative numbers in table 2 indicates fewer linguistic 

summarizations than labeled intervals were found.  

Positive numbers indicate that we generated more 

summaries than there were labels, and zero values indicate 

that there were the same number of summaries as labels.  

The results show that, in activities that involve interaction 

with the chair and the couch (static scene regions/objects), 

the automated system finds what the human identified.   

Table 2 shows that a fair number of upright time 

intervals went undetected.  This is mostly because 

linguistic summarizations that are too short in time 

duration are removed by our system.  These periods are 

possibly due to incorrect silhouette segmentation, 

inaccuracies in fuzzy inference, or high frequency activity 

that is not related to fall detection.  Elders do not generally 

perform extremely quick activities, such as being on the 

ground for only one second.  We remove linguistic 

summarizations less than two seconds.   

 We discover more on-the-ground and in-between states 

than human labelings.  After looking at the level one 

inference results, this is because of time intervals of 

incorrectly inferred activity and silhouette segmentation 

error (bad features extracted, hence, incorrect inference).  

As a result, the linguistic summarizations produced by our 

system are segmented into a larger number of smaller 

summaries.  This is not ideal from a report generation 

standpoint, but from a recognition standpoint it is not bad 

as long as we are still able to automatically recognize falls 

from these summaries (which we are able to do).    

Metric 3 is the most important; it shows how many times 

the second level of inference correctly classified a fall.  

Sixteen short time period sequences were evaluated (30 

seconds to 1 minute in duration each).  In 12 of these 

sequences the subject walked into the room, went over to 

the mat, and then fell to the ground (where the falls were 

performed in different fashions, such as to the front, the 

side, etc).  Each fall was successfully detected; there were 

no false alarms.  Four of the 16 sequences were non-fall 

activities, such as bending down to tie one‟s shoes and also 

tripping and getting back up immediately.  Nurses 

indicated that they would like to get a summary when 

someone is on the ground for a short amount of time, but 

they do not want to have an alert generated.  We did not 

call any of these false alarm situations a fall. 

Two longer time period sequences were evaluated for 

falls.  There were no falls in the first sequence, which was 

approximately 7 minutes in duration, and the system 

correctly did not classify any falls.  In the second 

sequence, approximately 11 minutes in duration, there 

were four on the ground periods, however, only two falls.  

In the first fall the subject stayed on the ground for a long 

time period and in the second case the subject fell and 

repeatedly tried to get back up but was not able to.  In both 

of these situations our system correctly classified the fall.  

There were two on the ground activities that were intended 

to look like a fall.  In the first case the subject tripped and 

got right back up and in the second case the subject went 

to the ground but was able to make it back up in a 

reasonable amount of time (quantified by the fuzzy sets 

that the nurses picked).  In both of these cases the system 

correctly did not flag a fall. 

Even though there were more on-the-ground linguistic 

summaries than there were on the ground activities, the 

system correctly classified all of the falls.          

VI. CONCLUSIONS 

In this paper, we demonstrated the performance of a 

video-based activity analysis system for assisting elders 

with “aging in place”.  The primary activity analyzed was 

falling, which is a relatively short time activity.  The 



  

system is built using soft computing and activities are 

recognized using linguistic summarizations of activity.  

The system‟s knowledge is expressed using linguistic 

variables, which helps in understanding its successes and 

failures, and more importantly, identifying and fixing 

problems.  The linguistic summaries also provide a rich set 

of reduced descriptions about the video sequence in a 

language and format that users can understand.  The 

metrics that we introduced indicate that there is still some 

work to be done with respect to matching the exact number 

of lingusitic summarizations and the hand labeled activities 

and the frame-by-frame decisions made.  However, the 

system generated an adequate number of on-the-ground 

summaries, which enabled the second level of inference to 

correctly classify falls and distinguish between fall and 

non-fall activities.    

VII. FUTURE WORK 

Many of the quantities used in this work are based on 

empirical observations and domain knowledge from 

nurses.  As mentioned above, we are investigating using 

training data to determine fuzzy sets and fuzzy rules.  This 

should help with some of the deficiencies observed in 

evaluation metrics 1 and 2.  This will also provide a 

comparison between domain experts and an automated 

way of rule and/or fuzzy set acquisition.   

We just captured a larger dataset of falls using stunt 

actors that can be used to learn the system parameters and 

further test the system under a wider range of activities and 

subjects.  To make sure that the actors performed the falls 

in a similar fashion to the way that elders fall, nurses 

coached the stunt actors.  We showed great discriminatory 

ability for the range of activities that were included in the 

data set analyzed in this paper.  However, we captured a 

more complicated and larger set of false alarms activities 

in the stunt actor data set.  We will analyze these 

situations, measure how the system performs, and 

recommend corrections based on these findings.   
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