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Abstract—We present an approach for activity state recognition
implemented on data collected from various sensors—standard
web cameras under normal illumination, web cameras using in-
frared lighting, and the inexpensive Microsoft Kinect camera sys-
tem. Sensors such as the Kinect ensure that activity segmentation
is possible during the daytime as well as night. This is especially
useful for activity monitoring of older adults since falls are more
prevalent at night than during the day. This paper is an application
of fuzzy set techniques to a new domain. The approach described
herein is capable of accurately detecting several different activity
states related to fall detection and fall risk assessment including
sitting, being upright, and being on the floor to ensure that elderly
residents get the help they need quickly in case of emergencies and
ultimately to help prevent such emergencies.

Index Terms—Activity labeling, depth images, fuzzy clustering,
image moments, infrared images.

1. INTRODUCTION

ALL detection and fall risk assessment are major goals of
F our research [1] as we continue to conduct experiments at
TigerPlace, which is an “aging in place” facility for the elderly.
The aim of our research is to build a system to discretely monitor
the activity of older adults in their apartments, while addressing
their privacy concerns. We also seek to identify diagnostic mea-
sures that are predictors of fall risk, which would then fulfill the
long-term goal of our project, which is to generate alerts that
notify caregivers of changes in a resident’s condition so that
they can intervene and prevent or delay adverse health-related
events [1].

Among previous work related to activity analysis, sit-to-stand
was analyzed by Allin and Mihailidis [2] using 2-D and 3-
D image descriptors from silhouettes and centroid locations
from three different camera views. They computed the following
features: distance of the torso from the feet and the angle created
by the torso, head, and feet as well as the raw position of the
feet; and they used a decision tree to identify the activities of
sitting and standing. The ground truth used was obtained by
hand labeling the transition data from the video sequence for
the two individuals tested.
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Berrada et al. [3] used simple image subtraction techniques
to extract the pixels indicating motion and then computed the
mean and standard deviation along the horizontal and vertical
axes to identify sit, attempt to sit, stand, and walk in a given
sequence. Checking for motion in the frames in the last 2 min
before the stand frame gave the start frame for the beginning of
the sit-to-stand activity.

Oikonomopoulos et al. [4] used visual operators based on
optical flow techniques and B-splines for activity recognition of
running, jumping, walking, and other activities. The final classi-
fier used was the relevance vector machine, which is supervised
in nature, thus requiring that training data be labeled. In another
approach for activity segmentation, Stauffer and Grimson [5]
proposed clustering the RGB values of pixels to detect back-
ground changes, but the activities were identified using a large
database with prototypes of all the activities. This made the
segmentation more supervised in nature.

Goffredo et al. [6] analyzed sit-to-stand by finding the points
of flexion in the shoulder, knee, and hip region using the Gauss—
Laguerre transform and subsequently tracking these natural
markers to obtain the trajectories of these points. The angles
obtained at the points of flexion were compared to analyze the
sit-to-stand activity.

While the algorithms mentioned previously were based on vi-
sion sensors under normal illumination, McMurdo and Gaskell
[7] and Girardi et al. [8] conducted several experiments that
indicate the severe fall risk of older adults in low lighting condi-
tions. This created a potential problem since nocturnal activities
are an important aspect of an independent lifestyle. This, in
turn, creates a need for surveillance techniques that can be im-
plemented in the absence of light or under negligible lighting
conditions. Maadi and Maldague [9] conducted a study that in-
volves dynamic infrared (IR) sensors. They first implemented
background subtraction, then classified different objects, and fi-
nally, tracked these objects. The tracker employed iterative sys-
tems of location predication (for the next frame) and correction
based on the location of detected objects in the current frame. To
compensate for global motion, Strehl and Aggarwal [10] used
a multiresolution scheme based on the affine motion model to
detect independent moving objects using forward looking IR
cameras.

Recently, Microsoft introduced the Kinect sensors that incor-
porate an IR projector and camera, thus enabling it to function as
a vision-based sensor under all lighting conditions. This is use-
ful in gathering activity information during all times of the day.
Among recent work using Kinect sensors, Sung et al. [11] used
the sensor to construct an indoor (e.g., office, kitchen, bedroom,
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bathroom, and living room) activity dataset for 12 categories
of activity detection. In addition to RGBD images (RGB and
depth images), the database also created skeleton motion data
by defining each pose as a rigid skeleton with 15 joints. They
trained a two-layered Markov model for classification. Along
similar lines, Ni ez al. [12] used the RGB information in conjunc-
tion with the depth information from Kinect sensors to detect
activities such as entering the room, exiting the room, eating,
going to bed, etc. Spatiotemporal interest points were consid-
ered using features such as Histogram of Oriented Gradients and
Histograms of Optic Flows. Classification of the activities was
done using K-nearest neighbors and support vector machines
(SVMs).

In our system, background subtraction techniques using a
mixture of Gaussian models with color and texture features are
used on the raw image data to separate the foreground from the
background, and the resulting silhouettes are then taken as input
to the automatic activity segmentation system. Since our goal
is to build an automated video surveillance system to continu-
ously monitor elderly persons as they perform their day-to-day
activities, we maintain their privacy by using silhouettes instead
of raw images for further analysis. It has been shown previously
that silhouettes address the privacy concerns of elderly persons
participating in our studies and increase their willingness to ac-
cept video monitoring systems in their households [13]. From
these silhouettes, image moments are extracted, which are then
clustered using fuzzy clustering techniques to produce fuzzy
labels in the basic activity categories. Clustering for training
sequences followed by human labeling of the cluster centers
forms our strategy of activity state recognition. The real-time
analysis is done by a fuzzy nearest prototype classifier. As we
have done for 3-D processing [14], the resulting activity state
memberships can be fed into a higher level rule-based system
for fall detection or fall risk assessment.

Clustering is in itself a very fuzzy concept [ 15]. Depending on
the clustering algorithm implemented, the criterion function to
be optimized changes, and the nature and shape of the clusters
vary. Hence, a key concept in clustering, fuzzy or otherwise,
is that there can be multiple viable solutions depending on the
dataset and clustering technique used. This issue will be re-
visited later in this paper. There have been several approaches
used to recognize activities using fuzzy clustering. D’Urso and
Massari [38] used a multicamera system to create a database of
posture vectors of different people. They then compared the
fuzzy distances of the test sequence with the mean posture
vectors from the database to identify the person. In [39], the
researchers tried to distinguish between eating, drinking, and
apraxia (eating disorder) by creating a 3-D volume prototype of
the different activities using a single camera (time is the third
dimension in this case). The test vector was then classified into
one of the activities on the basis of the nearest fuzzy distance
from the previously created prototypes. While [38] required a
multicamera system, [39] was used for specific activities with
the requirement that the person was sitting at a fixed distance
from the camera. Our algorithm relaxes that constraint and uti-
lizes a single vision sensor with the requirement that the entire
silhouette of the person be present in the sensor’s field of view.
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Our previous work [16]-[18] describes the use of fuzzy clus-
tering techniques in identifying sit-to-stand frames using image
moments on visible light data. The work described in here builds
on that previous research by extending the results obtained from
standard web camera images to cameras with IR lens and fi-
nally, using the Kinect sensors. We emphasize that this paper
does not extend the state of the art in fuzzy set theory; rather,
it describes a novel application of fuzzy clustering and fuzzy
prototype classification to video streams from several imaging
sensors in a real environment. We are not trying to capture all
the activities of daily living, but instead our work focuses on
labeling specific activities such as upright, sit, transition, on
the bed, or on the floor. These activities are either directly or
indirectly related to fall detection and to fall risk assessment
activities such as sit-to-stand, stand, or the “timed up and go”
test used by physical therapists [41]. Moreover, we have placed
the sensors only in the living room area in the apartments in
order to address privacy concerns of the residents.

Our group has worked on recognizing indoor activities using
several approaches. Zhou et al. [33] used a single fisheye Uni-
brain camera with 180° field of view to measure activity levels
using location specific information. The regions of the apart-
ment visible to the camera were manually labeled as the kitchen
area, the living area, the bathroom, etc. Then, the location of
the identified foreground determined the assumed activity of
the person. For example, if the person was in the kitchen area
of the perspective image, depending on the activity level de-
tected and location, he could be either cooking or at the dining
table. The dining table region was also manually segmented.
This approach is more suited to obtaining a rough estimate of
the overall level of activity than it is to really identifying spe-
cific activities. In another approach, Anderson et al. [14], [34]
implemented a hierarchical fuzzy rule-based system for activity
recognition using a two-camera system to analyze the activity in
voxel or 3-D space. This required a rigorous calibration process
where locations of common points of interest had to be man-
ually labeled and their world coordinates had to be measured
for ground truth. It also relied on the assumption that the loca-
tions of both the cameras did not change with respect to each
other. Any slight movement of the cameras severely affected the
voxel persons, since the intersections changed drastically. The
camera system also needed sufficient lighting and cannot “see”
in the dark. The processing speed for the Kinect system was
approximately 15 frames/s and that for the two-camera system
was approximately 8 frames/s, which also requires a graphi-
cal processing unit (GPU) (GeForce GTS 450) to increase the
processing speed (camera system only). The fuzzy rule-based
system required prior training and was built using considerable
input from clinicians. Our algorithm uses a single vision sensor
(web camera or depth sensor) and only requires the prototype
labeling of the initial image sequence. No rigorous training
process is needed. It can perform just as well in low lighting
conditions, which is an extremely important factor in the case
of fall detection as pointed out earlier.

The remainder of this paper is organized as follows. Sil-
houette extraction and a description of the moments used for
clustering are presented in Section II. Section III describes
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Fig. 1. Block diagram of algorithm.

the fuzzy clustering techniques used for activity analysis and
Section IV describes the experimental setup and results using
the standard web cameras under normal illumination. Our work
using the web cameras with IR filters is described in Section V
and the Kinect sensor analysis is described in Section VI. Con-
clusions and recommendations for future work are presented in
Section VIIL.

II. METHODOLOGY

This section describes the silhouette extraction process, the
image features employed, and the fuzzy clustering technique
that we used in our work. For all three of the image sensors
tested in this study (standard web camera under visible light-
ing, web cameras with IR illumination, and the Kinect sensors),
we implemented the same three Zernike image descriptors de-
scribed in Section II-A and clustered these moments using
the Gustafson—Kessel (GK) clustering approach described in
Section II-B.

A. Silhouette Extraction and Image Moments

Silhouette extraction is a background change detection tech-
nique whose accuracy depends on how well the background
is modeled. The background subtraction method implemented
in our work uses color and texture features, creating back-
ground models using a mixture of Gaussians, and employs
shadow removal for greater accuracy. Binary morphological op-
erations [19] are used to fill up holes and remove noise from the
extracted silhouettes.

After obtaining the silhouettes from the image sequence, the
next step in the algorithm is extracting image moments, as shown
in the block diagram in Fig. 1. Image moments are applicable
in a wide range of applications such as pattern recognition and
image encoding. One of the most widely used is the set of Hu
Moments [20]. These are a set of seven central moments taken
around the weighted image center. A second set of moment
invariants are due to Zernike and are described in [21].

The Zernike polynomials in polar coordinates [20] are given
as follows:

V;n,n (7'79) - Rmn (T) * €Xp (]na) . (1)

The orthogonal radial polynomial is defined by
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For a discrete image, if P,, is the current pixel intensity
(0 or 1 for binary images), the Zernike moments are given by
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Three of the moments were used in this experiment using (4)
with order m = 2, 3, and 4 and angular dependence n = 0, 1
and 2, respectively. Preliminary experiments on the image mo-
ments were conducted to decide which image descriptors would
most fit our purpose. We compared the results obtained from
Hu moments and those from the Zernike moments and found
that the Hu moments are scale and rotation invariant, which
make them extremely robust and applicable in different scenar-
ios. However, they are nonorthogonal in nature, i.e., their basis
functions are correlated, making the information captured re-
dundant. In contrast, the Zernike orthogonal moments comprise
image moments with higher performance in terms of noise re-
silience, information redundancy, and reconstruction capability.
The results of comparing GK clustering on Hu moments with
those with the Zernike moments are described in [16]. From
those experiments, we focus on the Zernike moments for this
work.

The clustering algorithms used for the identification of activ-
ity states are explained in the next part of this section.

B. Fuzzy Clustering—Gustafson—Kessel Clustering

Fuzzy clustering techniques are used to partition data on the
basis of their closeness or similarity using fuzzy methods. As
opposed to the hard clustering, each element can belong to a
certain cluster with varying degrees of membership.

The GK [22] fuzzy clustering technique was implemented
on the Zernike image moments described previously. This is a
very popular clustering algorithm with applications in several
fields such as image processing, pattern recognition, system
identification, and classification [23]. One of the reasons we
chose the GK clustering technique is that it is well suited for
the ellipsoidal clusters produced by the Zernike moments. This
algorithm is an extension of the fuzzy c-means algorithm in
which each cluster has its own unique covariance matrix which
makes it more robust and more applicable to various datasets
which contain ellipsoidal clusters of different orientations and
sizes [24]. The basic clustering approach is well known and is
summarized here for completeness.

Algorithm:
1. Fix ¢ =number of clusters & initialize the iteration counter
t=1.

2. Initialize membership matrix U for all the data points and
for each of the clusters. (The initialization is explained
further in this section.)
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3. Do

4. Compute the cluster centers using

S wi (= 1) * @
Zf\:l uij(t — 1)

5. Compute the covariance matrices for each of the clusters
as in

%, ()= D1 uijq(t—g;ix;iqu(i(i))lzﬁ(xi — i (1)) .

6. Update the partition matrix:

pj (t) = &)

(6)
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using the Mahalanobis distance, D;;, which is given by
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where [ is the length of feature vector x.

7. Increment the iteration counter t.

8. Until || p (¢) —p (t —1) || <€ or t > tyayx, where € is
the maximum permissible error and ¢, ,x 1S the maximum
number of iterations specified.

Here, p(t) is the vector of all centers, and the distance norm
employed to determine convergence is the standard Euclidean
distance. An important point to be noted is that it is essential
to initialize the membership values to random values but with
the means equal to 1/c (where c is the number of clusters) and
standard deviation equal to 1 so that the algorithm converges at a
much faster rate. Standardization is essential because it ensures
that equal importance is given to each of the moments used.
Otherwise, the algorithm would focus on the moments with the
highest range.

It is worth noting that since we constrain the determinant of
the covariance matrix to be 1, we impose restrictions on the size
of the clusters, and as a consequence, the identified ellipsoidal
clusters have to be of similar size [24], [25].

III. EXPERIMENTAL SETUP AND RESULTS—WEB CAMERAS
A. Experimental Setup

As mentioned earlier in Section II-A, silhouettes from raw
RGB image data were extracted by segmenting the human body
from the background with the camera at a fixed location. Before
silhouette extraction can occur, an accurate background model
was acquired. The background is defined as any nonhuman
static object. After the background model is initialized, regions
in subsequent images with significantly different characteristics
from the background are considered foreground objects. Areas
classified as background are also used to update the background
model. Fused texture and color features are used for background
subtraction [26]. The results of the silhouette extraction are
shown in Fig. 2.
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(b)

Fig. 2. (a) RGB image of the side profile of a person sitting on the chair.
(b) Silhouette extracted after extracting the foreground from the image.
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3 b Blue: Upright
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Fig. 3. (a) GK Clustering results on an upright-to-sit sequence (X-, Y-, Z-
axes represented by the Zernike image moment values). (b) Hardened fuzzy
membership values (X -axis represents the image frame number and Y -axis
represents the membership values: 1—upright, 2—Sit). (c) Membership values
of a test sequence by frame number for the upright activity. (d) Transition frames
based on thresholding the membership values. The trigger shown indicates the
identified transition region.

B. Classifying the Transition Frames

Fig. 3(a) shows the results of clustering the Zernike moments
from an upright-to-sit sequence, and Fig. 3(b) shows the hard-
ened membership values. The two clusters are color coded with
red indicating the sit activity and blue indicating upright. While
the clustering technique separates the two activity frames, the
labeling itself is implemented by the semisupervised approach
described in Section III-C. The transition membership values
of the sit-to-stand activity are highlighted in Fig. 3(c). From
Fig. 3(c), we can see that the membership (in the “upright”
cluster) is initially high and falls to almost zero.

For the frames indicating “transition” motion (sit-to-upright
or upright-to-sit or upright-to-floor or floor-to-upright), the
membership is intermediate (values 0.2 to 0.8). Subsequently,
intermediate memberships are used to identify transitions in ac-
tivity sequences. This can be seen in Fig. 3(d), which indicates
the location of the transition from upright-to-sit in this particular
sequence.
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C. Prototype Matching

After using the GK, as with other fuzzy clustering algorithms,
we obtain a predefined number of clusters. However, without
any a priori information, there is no way to link a cluster with a
specific activity. While we could use the fact that most data runs
would begin with a person walking into the room, thus making
the initial frames belong to the “upright” cluster, we wanted to
make the algorithm more robust and independent of such a priori
assumptions. To accomplish this, we followed a semisupervised
approach, wherein the prototypes of some training data runs
were used to identify the activity cluster of the current data. We
used the nearest prototype matching for the sequences above
and compared the distance between the Zernike moment image
vectors of each new image frame with the labeled vectors of
previous sequences. The average distance between the vectors
over all the sequences of a given activity, such as “on the floor,”
was averaged and the activity of the new frame was identified.

D. Experimental Results

Experiments were conducted using video sequences collected
with visible light, IR illumination in the dark, and depth imagery
from the Kinect sensor. The identical approach, which has been
described previously, was used successfully with each of these
different modalities. The experimental results from the visible
web camera experiments are described as follows.

1) Laboratory Settings: We established an image sequence
database at a resolution of 640 x 480 with two fixed fisheye lens
Unibrain cameras with range of viewing angle equal to 180°.

We first tested on sit-to-stand runs from seven people aged
18-88. The five participants were three healthy young adults
and two elderly adults over the age of 80. The chair used had
a standard seat height (approximately 46 cm) as suggested in
the Berg Balance Scale test [27]. The video sequences were
captured at a rate of 5 frames/s.

To explore the results for a range of sit-to-stand styles, dif-
ferent types of sit-to-stand motions were acted out, including a
slouched sit-to-stand, which is common as elderly people start
bending forward with age, a sideways slouch (both left and
right) to depict a patient with paralysis, and sit-to-stand with
legs away from body to portray a patient suffering from a knee
injury. Two physical therapists were included in the participant
group. They demonstrated the abnormal sit-to-stand motions,
which show how paralysis, old age, and knee injuries affect a
person’s ability to get up from a chair. Each of these motions
was repeated multiple times by each of the five healthy young
subjects. The two healthy elderly participants were asked to re-
peat their usual sit-to-stands five times each. In all, 70 runs were
taken with 30 of them being the normal healthy runs and the
remaining 40 the elderly or abnormal sit-to-stands mentioned
previously.

Fig. 4 shows frame examples with the original raw images,
the corresponding silhouettes, and the classification results for
frames indicating sitting, transition (sit-to-stand), and upright
activities. The silhouettes are color coded according to the clas-
sified activity. Classification was done by thresholding the mem-
bership functions. If the membership value is greater than 0.9,

Fig. 4. Segmented activities of a sit-to-stand sequence indicating sitting, tran-
sition, and upright with the silhouettes and color-coded silhouettes according
to the identified activity. Membership values are thresholded from the GK clus-
tering results using the Zernike Moments as features and then classified after
prototype matching.

then the frame is assigned to the class that the membership
value indicates. If the membership value is between 0.1 and 0.9,
then the silhouette is identified as a transition frame. Using this
thresholding technique, there are some errors in the transition
frames identification, for example, a single frame identified as
being upright between a succession of transition frames on both
sides, but these are easily rectified using a simple averaging
filter on the classification results.

The results were compared against the Vicon Nexus Mo-
tion Capture system that was used as ground truth; 94% accu-
racy for activity classification from 21 sit-to-stand sequences
performed by seven participants was obtained using the GK
clustering on the Zernike moments. The sequences contained
approximately 300 frames each. The cluster labeling was done
using the prototype matching technique described in Section
IV-D. Further analysis and discussion has been described in our
previous work [16].

A point to highlight here is the strength of this algorithm in
being able to connect the results of soft classification of one
image sequence and using its results for the successive ones.

2) TigerPlace: Since the goal is to employ our methods in
an unstructured environment with older adults, we tested our
algorithms at the senior housing facility called TigerPlace. This
IRB-approved study included older adults from the ages of 83—
97 with multiple health issues such as orthopedic disorders and
heart problems as well as some requiring the assistance of a cane
to walk. Ten residents from TigerPlace participated in our re-
search and we have tested the algorithm on these ten sequences.
A “repairman” was involved in each scenario with the older
adult. There is interaction between the two individuals in the
scenario. This scenario comprised activities which the subjects
normally perform on a daily basis such as walking around,
stretching their arm to reach for something, sitting on a chair
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TABLE I
CONFUSION MATRIX OF THE GK ALGORITHM FOR ZERNIKE MOMENTS WITH
RESPECT TO THE MANUALLY SEGMENTED GROUND TRUTH FOR THE
ACTIVITIES OF SIT, TRANSITION, AND UPRIGHT FROM THE STANDARD WEB
CAMERA IMAGE SEQUENCES IN THE APARTMENTS AT TIGERPLACE

GK | Sit Transition | Upright
GT
Sit 540 6 4
Transition 21 129 22
Upright 3 9 651
View #2

View#1 IRlights

Camerasl

Fig. 5. Two sample images of our two camera views and their positions; red
ellipses indicate the positions of the IR lamps, emitting IR radiation which
cannot be seen by our eyes.

and getting up, greeting the repairman, and stepping over an
object on the floor, which are activities that would occur daily
in the lives of the residents at TigerPlace. For the purpose of
our experiment, we have focused on the “walking and sit” part
of the sequence. The chair in the settings is approximately at
right angle to one of the cameras and is facing the other camera
in the scenario. The results are shown in Table I. Each of the
image sequences was recorded at 5 frames/s and the duration
was approximately 150 frames.

In these tests, 94% accuracy was obtained for the sit frames,
90% for transition frames (sit-to-stand or stand-to-sit), and 96%
for upright frames. These results were obtained after using a
temporal filter with window size 5.

IV. EXPERIMENTAL SETUP AND RESULTS—WEB CAMERAS
WITH INFRARED LIGHT

Once the algorithm was established using normal illumina-
tion, our next step was analyzing activities taking place at night.
This section discusses our preliminary work using the standard
Unibrain web cameras with IR filters.

A. Web Cameras Using Infrared Illumination

We established an image sequence database at a resolution of
640 x 480 with two fixed fisheye lens Unibrain cameras with
viewing angle of 180°. With IR lights ON, cameras can see what
our eyes cannot. Fig. 5 shows two sample images of these two
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Fig. 6. Silhouette quality obtained using IR emitters in a dark room. This
shows a stark difference with the silhouette obtained in Fig. 2.

camera views and their positions. As seen in later parts of this
section, we can recognize activities even with the degradation in
silhouette quality. Four students were asked to practice several
activities under low light conditions in laboratory settings. Note
that in the visible spectrum, these images are completely black.
IR lighting was used with a wavelength of 850 nm; in total, there
were 216 individual IR LEDs distributed between the two lamps
with a total power draw of approximately 20 W. The camera lens
was a fisheye type with a 180° horizontal field of view, anda 131°
vertical field of view when used on a 1/4”" imager. There is no IR
filter on the camera lens. We considered the possible activities
practiced at night and included them in our data collection:
walking, standing with hand motion, standing without hand
motion, sitting down and standing up, sitting on a sofa, going to
bed, and getting up from bed. Our data collection also contained
the following situations on the bed: sleeping (lying on bed),
being sleepless (flipping with some movements, i.e., with a few
toss and turns), sitting on the bed, and transitioning from sitting
to lying on the bed. In addition, four abnormal activities (falling)
were included: walking in the room and falling to the ground
due to loss of balance, slipping when trying to get up from a
chair, falling when trying to get up from a bed, and falling out
of the bed when sleeping. The frame rate is 3 frames/s. We
collected more than a half hour of frames (5400 frames) for
each person. The camera positions and the laboratory setup are
shown in Fig. 5.

Fig. 6 shows the silhouette extracted from a dark room illu-
minated by IR emitters. We can see that there is a significant
difference in the quality of the silhouette in Fig. 6 and that
obtained under normal illumination in Fig. 2.

B. Experimental Results

Preliminary experiments were conducted to establish the in-
put parameters and best features to use for these data. Several
participants performed different activities. As described in Sec-
tion II, silhouettes were extracted from the raw image sequences,
and the moment features were computed.

The GK clustering technique requires the number of clus-
ters to be specified as an input parameter. In preliminary ex-
periments shown in [16], we demonstrated that clustering the
Zernike moments using the GK algorithm with the number of
clusters initialized to the number of activities yielded the best re-
sults. Since single camera images are used here, the activities of
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(a) On the Floor

Upright Sleep On Bed

(b)

Fig. 7. Test results on an IR video sequence with three activities—upright,
asleep on bed, and on the ground. GK on Zernike Moments and clustering
results into (a) three clusters and (b) hardened membership results of Zernike
Moments by frame number.

walking and standing cannot be differentiated in general; thus,
they are grouped together as “upright” frames for the purpose
of activity recognition.

Fig. 7(a) shows the clustering results of one data sequence
using an input of three clusters. Fig. 7(b) shows the clustering
results with the X -axis that indicates the frame number in the
sequence and the Y -axis that indicates the cluster number after
hardening the membership matrix. These results have been color
coded for display purposes and black-colored points indicate the
areas where the points are densely clustered. Note that while it
is evident that the two clusters obtained represent the “sit” and
“on the floor” activities, without any prior information, we were
unable to identify which cluster indicates which activity. The
solution to this is explained in Sections III-B and III-C.

The scenario involved a participant who performs several ac-
tions in an unlit room. The three activities performed in the
scenario below were nighttime activities of moving around in
the room (upright), sleeping on the bed, and then falling onto
the floor. As can be seen in Fig. 7(b), the activities were well
separated after fuzzy clustering and partition hardening. How-
ever, in this scenario, the activity “fall” is equivalent to “on the
floor” since no other parameter has been taken into consideration
which could differentiate between the two activities.

The detection of the transition frames as well as identifying
the activity state using prototype matching is the same as that
described in Sections II-B and C. Using prototype matching, the
activity states were identified and the sample results are shown
in Fig. 8. In the raw images, the person has been circled in yellow
to distinguish the person from the background for visualization.
We can see that the silhouettes are fairly noisy and their shapes
are quite different from those obtained from the standard illu-
minated data. However, the results show strong clustering of
the image moments obtained from the same activity states. This
makes activity analysis possible even in the dark using fuzzy
clustering. Fig. 8 shows some of the color-labeled image frames
with blue indicating an upright frame, red signifying on the bed
activity label, and pink representing on the floor activity label.

Fig. 8. Segmented activities of a three-activity sequence indicating upright,
on the bed, and on the floor activity states with the color-coded silhouettes
according to the identified activity. Membership values are thresholded from
the GK clustering results using the Zernike Moments as features and then
classified after prototype matching.

V. EXPERIMENTAL SETUP AND RESULTS—MICROSOFT KINECT

In 2010, Microsoft released a new inexpensive device called
the Kinect, to allow controller free game play on their Xbox
system. The device uses a pattern of actively emitted IR light
to produce a depth image. Since the sensor uses depth informa-
tion, it is invariant to illumination changes and works extremely
well under negligible illumination for indoor environments. The
depth data returned from the device (at 30 frames/s) is an 11-bit
640 x 480 image. The precision of the returned depth values is
dependent on the distance. The details are given in [28].

A. Overview of Kinect Sensors

In order to extract the foreground from the background, a stan-
dard background subtraction algorithm was employed, different
from the one used for visible and IR illuminated scenes. A set of
training background images without any person present was col-
lected before each experiment, and the minimum and maximum
values of each pixel of the background frames were stored. In
the subsequent frames, the pixel values were compared against
the minimum and maximum values, and if the value was outside
the range, it was considered a foreground pixel. A smoothing
operation was used to remove noise in the image frames using
anisotropic diffusion [29]. Fig. 9 shows samples of Kinect depth
data taken of a person walking, about to sit, and sitting, respec-
tively. The figures below them show the extracted foregrounds
using the technique described previously. In the depth images,
the person is circled in red to differentiate the silhouette from
the background. It is worth noting that parts of the person tend
to get absorbed in nearby objects as the person gets further away
from the Kinect sensor. In such cases, the object (chair in Fig. 9)
and the foreground have similar depth information, which can
slightly affect the extracted foreground data. In addition, note
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(a) (b) (c)

Fig. 9. Sample images of the Kinect depth images of a person (a) walking,
(b) about to sit, and (c) sitting and the extracted foreground of each below.

upright
% B
e
'~
(a) (b)

Fig. 10.  Test results on a depth video sequence with two activities—sit and
upright. GK on Zernike Moments and clustering results into (a) two clusters
and (b) hardened membership results of Zernike Moments by frame number.

that for the depth map, brighter pixels mean larger depth values.
Some black regions correspond to depth measurement errors
due to surface reflections.

B. Experimental Results

1) Laboratory Settings: Preliminary experiments were con-
ducted using four participants with each participant walking
back and forth in the lab and performing several sit-to-stands.
Using the Zernike moments from the silhouette of each frame,
fuzzy clustering using the GK algorithm was implemented with
the number of clusters defined as equal to the number of activity
states within the data run. The result of clustering a part of a
sequence using the Kinect is shown in Fig. 10

The membership results were obtained by hardening the val-
ues obtained from clustering the image moments. As can be
seen from the results, there are a few frames between the sit and
upright regions which have misclassified the results. However,
these are rectified by identifying the transition frames as those
having membership values between 0.9 and 0.1. The process of
obtaining the transition frames as well as prototype matching is
the same as described in Sections II-B and II-C.

2) TigerPlace: As a means for testing the algorithms im-
plemented in our research laboratory, as well as continuously
assessing gait parameters of older adults in their homes, Kinect
cameras have been placed in ten apartments at TigerPlace. We

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 22, NO. 3, JUNE 2013

TABLE 11
CONFUSION MATRIX OF THE GK ALGORITHM FOR ZERNIKE MOMENTS WITH
RESPECT TO THE MANUALLY SEGMENTED GROUND TRUTH FOR THE
ACTIVITIES OF SIT, TRANSITION, AND UPRIGHT FROM THE DEPTH IMAGE
SEQUENCES IN THE APARTMENTS AT TIGERPLACE

GK | Sit Transition Upright
GT
Sit 432 15 6
Transition 10 1 16
Upright 5 32 1109
00 a ‘ -'
0 4 a |
00 4 4
. ]
- 3 ] B e S
00 gﬂ "i |
B0 e — m "
et y — ™
0o ) :
(@) , (b)
1 -
Occlusion
.i = foree = =
£ .o |
© e (d)
Fig. 11.  Test results on a depth video sequence with two activities—sit and

upright. GK on Zernike Moments and clustering results into (a) two clusters and
(c) three clusters and their hardened membership results of Zernike Moments
by frame number (b) and (d). The occluded region is marked in (d).

analyzed sequences taken from nine residents inside their own
apartments. For ground truth, we manually segmented the se-
quences into the three activity states—sit, upright, and tran-
sition (sit-to-stand or stand-to-sit). As in Fig. 1, we manually
labeled the activity states of the first sequences and used the
nearest neighbor approach to classify the remaining sequences
(described in Section II-C).

The results are shown in Table II. The total activity classifi-
cation is ~95% with the transition frame classification 81.4%,
upright frames 96.7%, and sit frames 95%.

In eight of the nine sequences examined here, the number of
image frames identified with any of the three states mentioned
earlier matched that of the ground truth successfully. However,
one of the sequences accounted for approximately 30% of the
misclassified transition frames.

The reason for such a high percentage of misclassifications
was due to the presence of occlusion in the image sequence, in
this case the presence of a chair, which blocked the lower part of
the body from camera view. In fact, the occluded frames form
a separate cluster by themselves. This is further seen in Fig. 11.
Fig. 11 shows the results of clustering the occluded depth
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TABLE III
COMPARISON OF THE GK ALGORITHM FOR ZERNIKE MOMENTS WITH RESPECT
TO THE MANUALLY SEGMENTED GROUND TRUTH FOR THE ACTIVITIES OF SIT,
TRANSITION, AND UPRIGHT FROM THE DEPTH IMAGE SEQUENCES IN THE
APARTMENTS AT TIGERPLACE FOR DIFFERENT MACHINE

LEARNING TECHNIQUES
% NN SVM | HCM | FCM | GK
Correct
1 74.1 75| 56.3| 79.9| 96.65
2 68.8| 69.4| 704 | 793 | 944
3 63.1 66 | 69.3 81| 95.7
4| 713| 682]| 50.5| 822 | 93.9
5 69.2 | 766 | 754 | 921 | 97.4
6| 664| 71.2 81| 855 | 96.3
7 69.3| 704 | 56.2 | 88.1| 94.8
8 773 | 75.5| 55.8| 61.2| 89.7
Average | 69.94 | 71.54 | 64.36 | 81.16 | 94.86

sequence using GK clustering on the Zernike image moments
with two clusters [see Fig. 11(a) and (b)] and three clusters [see
Fig. 11(c) and (d)], respectively. As can be seen in Figs. 11(c)
and (d), the green cluster points represent the occluded part
of the sequence. Currently, we are working on techniques to
address the occlusion problem.

C. Comparison With Other Algorithms

In our previous work [16], we compared the results obtained
from clustering the Zernike descriptors with the Hu moments
and found the former to perform better for our application. For
the purpose of comparing our technique with other established
supervised and unsupervised techniques, we use the same data
described in Table II and test the results obtained from the
GK algorithm with those obtained from a multilayer perceptron
neural network with back propagation algorithm (NN), an SVM,
hard ¢ means clustering (HCM), and fuzzy ¢ means (FCM) with
Euclidean distance measure on the Zernike image moments.
NNs have been used for activity recognition in several studies.
In [35], Foroughi et al. used features such as projection of his-
tograms and head position to detect activities like walk, bend,
and falls by training a neural network. In [36], the authors used
motion sensors placed at different locations of the room and
used the neural network to estimate the location of the person
to determine his activity. In [37], Xue et al. tried to distinguish
between different types of gaits like walking with a volleyball,
walking with a heavy coat, and normal walking using features
such as gait energy image. They also compared the results ob-
tained from using NN and SVM as classifier and found that
they achieved 74% classification with NN and 78-91% correct
classification for the different gaits using SVM.

The NN used had one hidden layer with ten neurons, which
appeared sufficient for the dataset under consideration. The
SVM implemented for comparison used the linear kernel. For
the two supervised techniques as well as the HCM, the ground
truth was divided into three classes for upright, transition, and
sit. Of the nine sequences, one was used for training/prototype
labeling, and the others were used for testing for all techniques.
The results are displayed in Table III.

As can be seen, none of the algorithms perform as well as
GK clustering. Overall, both the supervised learning methods
yielded unsatisfactory results compared with the FCM and GK
techniques, although the SVM appeared to have slightly better
results. The HCM performed the worst, especially for the transi-
tion frames. This is not unexpected due to the crisp nature of the
HCM. The FCM performed the best of the competitors, which
was as expected since it is most similar to the GK technique.
However, the results appear unstable, especially when the num-
ber of frames is not equal in the two clusters. The best results
were obtained for the case with almost equal cluster sizes, but
still significantly below the output of our approach.

VI. IMPLEMENTATION DETAILS

The total processing time to generate silhouettes from the
video streams, including background modeling using mixture
of Gaussians, with the web camera system, is currently at 8 and
15 frames/s using the Microsoft Kinect sensors [28]. Much of
the speedup in this crucial portion of the web camera system
is accomplished using GPUs. Hence, the bulk of processing
works in real time. Calculating Zernike moments from binary
silhouettes is simple and has the approximate computational
complexity O(np?), where p is the order of the Zernike moment
[31]. While this could be a cause for concern for higher order
calculation of the Zernike moments, it is negligible for our
algorithm since we use a maximum order of 4 (see Section I1-A).
The clustering for building the activity models is done offline
and although the size of the membership matrix depends on
the data size as well as the number of clusters, the memory
requirements are negligible in this terabyte era. Furthermore,
for a sequence of 200 frames—the current size of the training
sequences, computation time is approximately 15 s, i.e., roughly
13 frames/s. Since our classifier is based on the fuzzy nearest
prototype approach, the computation for that is negligible. Thus,
our approach to activity state recognition is extremely efficient
with a total computational rate of 8 frames/s for the camera
system and 15 frames/s for the Kinect system using a quad core
processor, since the frame rate depends on the slowest module
in each case.

One potential cause for concern is the data storage. For our
applications, privacy concerns are crucial. Hence, we only store
the processed silhouettes from the apartments at TigerPlace us-
ing the camera system. For the Kinect system, we store the
silhouettes as well as the depth images; our University Internal
Review Board has approved the storage of the depth information
since they do not compromise the privacy of our participants.
Even with binary silhouettes and depth imagery that can be very
efficiently compressed, storing this information requires con-
siderable disk space over an extended period of time, roughly
11 GB per week per resident. This is accommodated by very
large secure server drives and a carefully constructed data man-
agement plan.

VII. CONCLUSION AND FUTURE WORK

We have presented a successful and yet simple technique for
detecting activity frames using fuzzy clustering methods. A soft
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classifier was constructed from the clustering results and activity
classification results using the Zernike Moments were obtained.
Our previous work [16] using the fuzzy clustering technique
was compared against the Vicon Motion Capture system in the
laboratory and was shown to be accurate in activity recognition.
This technique has shown the ability to link the results of one
sequence to the soft classification of others, showing its strength
and success over a range of image sensors and in real living
quarters.

With the use of improved background update techniques, bet-
ter quality of silhouettes can be obtained and more information
can be extracted from real-time environments. Our application
has shown its ability to determine different activities under dif-
ferent environments, both controlled as well as unstructured, and
it runs in real-time mode. It has been able to distinguish between
an on-ground event as well as an upright event (see Figs. 7 and
8). We also compared the results from testing our technique on
the depth sequences collected at the TigerPlace apartments with
the residents with other classifiers and found the GK clustering
to work best for classifying activities specifically related to fall
detection and fall risk assessment. An important application of
our activity recognition algorithm is the detection of falls in
older adults. As mentioned earlier, research indicates a higher
risk of falling at night among the older population [30]. Once
our algorithm detects an on-ground event, further analysis can
be done to analyze whether a fall has occurred, similar to the
work presented in [14]. While identifying the occurrence of a
fall may not prevent it from taking place, speedy help can be
provided, which can potentially save the lives of the residents or
at least ensure that immediate treatment is provided. Our appli-
cation has also been able to detect sitting (see Figs. 7, 8, 10, and
11) which is important for sit-to-stand analysis as a measure of
fall risk assessment. Its ability to segment out upright state is
also extremely useful for assessing walk-related information to
obtain gait parameters. Once our algorithm detects an upright
sequence, further processing can be done to determine if the
person is standing or walking and if he/she is walking, then the
stride parameters such as walking speed, step time, and step
length can be computed [28], [32] for further fall risk assess-
ment. Have we now solved the real-time fall detection and fall
risk assessment problem? Not yet, but activity state recognition
and analysis is a vital component of an overall eldercare moni-
toring system, which monitors older adults in their apartments
using motion sensors, bed sensors, as well as video sensors for
early illness detection [1]. We are also working on sensor fusion
algorithms using acoustic sensors to gain more activity-related
information in the apartments, especially at regions outside the
field of view of the sensors [40].

Future work includes creating an online version of the fuzzy
clustering algorithms described previously and validating the
results using fuzzy validity measures. This can speed up the
activity state identification process and lead to faster fall de-
tection. Apart from that, future work will also include finding
ways to detect occlusion in image silhouettes. Experiments are
currently being conducted to test the algorithm under different
scenarios with different activities to test the performance of the
algorithm for different locations of the Kinect sensor. This will
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make the algorithm useful for automatic activity recognition in
unstructured settings with any lighting conditions, which will
help prevent unmonitored physical injuries from taking place.
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