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Abstract- Many older adults in the US prefer to live independently 

for as long as they are able, despite the onset of conditions such as 

frailty and dementia. Elderly patients are particularly at-risk for late 

assessment of health changes due to factors such as their 

impression that such changes are simply a normal part of aging or 

their reluctance to admit to a problem. In-home sensors networks 

have emerged in the last ten years as a possible solution for early 

illness detection. Many projects have demonstrated the utility of in-

home sensors for monitoring elderly but also have shown the 

necessity of developing new pattern recognition algorithms able to 

handle large amounts of diverse data. In TigerPlace, an aging in 

place facility from Columbia, MO, we created a unique living 

laboratory by deploying in-home sensors together with an electronic 

health record (EHR) system developed in-house that integrates 

clinical and sensor data. In-home monitoring devices such as 

infrared motion detectors, Kinect depth cameras, Doppler radars 

and bed sensors capture information related to the behavior of the 

residents from the monitored apartment and assist the clinical 

personnel in medical decision making. In this paper we present a 

review of our early illness detection (EID) and recognition (EIR) 

methodologies experimented in TigerPlace, together with results 

and lessons learned. 
Keywords: sensor networks, early illness detection, sensor 

sequence similarity, frequent activity patterns. 

I. INTRODUCTION 

Between 2015 and 2050, the USA will experience a 

considerable increase in population aged 65 and over, due 

largely to baby boomers who turned 65 in 2011 [1]. Factors 

such as fertility decline (fewer available children to live with), 

increased income and an individual centric modern culture 

make older adults chose to live independently despite 

advanced age and the onset of chronic conditions such as 

chronic heart failure or dementia [2]. Some chronic disease and 

their exacerbations are preventable or less costly if they are 

diagnosed in early stages by clinicians with help from family 

members [3]. According to a Center for Disease Control 

(CDC) overview of chronic disease spending [4], the cost of 

the five most prevalent chronic diseases in US (heart disease, 

cancer, diabetes, arthritis and obesity) was close to a trillion 

dollars. Consequently, early illness detection (EID) may lead 

to a better quality of life and a reduction in health care cost. 

Sensor networks have emerged in the last decade as a 

possible solution to EID in older adults. Many academic 

projects such as CASAS (Washington State University), 

TigerPlace (University of Missouri) and ORCATECH 

(Oregon Health and Science University) have demonstrated 

the utility of in-home sensors for monitoring elderly but also 

have also shown the necessity of developing new pattern 

recognition algorithms able to handle large amounts of diverse 

data also known as big data. 

In TigerPlace [5][6], an aging in place facility from 

Columbia, MO, our interdisciplinary research team has created 

a unique living laboratory by deploying in-home sensors 

together with an electronic health record (EHR) system 

developed in-house that integrates clinical and sensor data. In-

home monitoring devices such as infrared motion detectors, 

Kinect depth cameras, Doppler radars and bed sensors capture 

information related to the behavior of the residents from the 

monitored apartment and assist the clinical personnel in 

medical decision making. We have shown that unobtrusive, 

continuous monitoring of individuals with in-home sensors 

provides useful embedded health assessment that can assist 

health care providers in detecting health decline and leading to 

earlier intervention [7,8].  

A variety of methodologies for detecting activity and assess 

medication compliance have been reported in the literature [9-

14]. In TigerPlace, we employ sensor network technology to 

provide early illness detection. We have installed sensor 

networks in the apartments of 50 residents, a system that has 

been active since fall of 2005. Using the deployed sensor 

network we experimented with various EID and EIR 

methodologies. Here, we distinguish between EID 

methodologies that signal a possible onset of a non-specific 

illness and EIR ones that try to provide more details and even 

identify the medical condition. The EID methodologies detect 

if a day is normal (no clinical significant event was detect) or 

abnormal (some clinical significant was detected). The EID 

algorithms can be supervised, such as k-nearest neighbor-

(KNN) or unsupervised, such as one class classifier (OCC). 

EIR methodologies try to identify possible diseases associated 

to the captured behavior such as: loss of appetite and lethargy 

may be due to gastroenteritis, frequent nightly toilet visits 

might be due to a urinary tract infection (UTI) and lethargy and 

decreased walking speed may due to depression [14]. While a 

supervised approach to EIR is theoretically possible, it is most 

of the time impractical to find behavior patterns for all known 

diseases and even harder to use them across patients. Our EID 



method is based on linking the sensor data to the TigerPlace 

EHR data using a bioinformatics approach. In this paper we 

present seven EID/EIR methodologies: A) anomaly detection 

based on a single sensor, B) anomaly detection based on 

multiple sensors, EID using KNN, C) anomaly detection using 

sequence similarity, D) anomaly detection based on missing 

frequent normal patterns (MFP), E) anomaly detection based 

on frequent abnormal patterns, F) EID based on sensor 

similarity and EHR data, and G) blood pressure variation 

prediction. 

The structure of this paper is as follows. In section II we 

briefly describe the sensor network architecture and the data it 

produces. In section III we describe two sensor representation 

methodologies used in our research: multidimensional time 

series used in methods 1, 2 and 7 and unidimensional discrete 

time series that is related to the methods 3, 4, 5 and 6 

mentioned above. In section IV we present seven EID/EIR 

methods tested on TigerPlace data. Finally, in section V we 

provide conclusions and future directions. 

II. SYSTEM ARCHITECTURE 

We deployed our sensor networks in 50 TigerPlace 

apartments with the University of Missouri IRB approval. On 

average, we have two years of data for each resident. Figure 1 

shows the schema of our monitoring system.  

Fig. 1.  TigerPlace monitoring system architecture. 

 

The main components of the monitoring system are: a sensor 

network, a data logger, a reasoning system that analyses sensor 

patterns, an electronic health record (EHR) system, an alert 

manager to notify clinicians of potential problems, and a secure 

Web-based interface to display the data for the clinicians and 

researchers. The data logger date-time stamps the data, and 

sends them to a database on a secure server via a wired network 

connection. The passive infrared (PIR) motion sensors are 

placed in various places, such as the living room, kitchen, 

bedroom, bathroom, on the ceiling over the shower, in the 

laundry closet, in the refrigerator, and in kitchen cabinets and 

drawers. Bathroom activities are monitored by a motion sensor 

installed above the shower. The depth camera (Microsoft 

Kinect) is placed in the living room and measure gait 

parameters (speed and step length) and detects falls. The sleep 

patterns of each resident are captured by a bed sensor placed 

under the mattress. The bed sensor consists of four hydraulic 

strips [12] that captures quantitative heart rate, respiration and 

restlessness values. 

The EHR system captures a variety of data about a 

TigerPlace resident such as demographics, International 

classification of disease version 9 (ICD9) diagnose codes, 

medications, emergency room visits, hospitalization records, 

nursing progress notes, nursing visit notes, assessment forms 

(SF-12, mood scale, fall assessment, mini mental state exam- 

MMSE), interim physician orders (IPO), reimbursement forms 

(HCFA-485) and activities of daily living (ADL). The nursing 

visit module records information about vital signs and certain 

assessment questions; health data are entered into the EHR 

system during the weekly wellness visit or during visits 

requested by the resident. The progress note module is used by 

TigerPlace staff to share information about a resident. The 

ADL module assists the nursing staff to record and assess daily 

activities of each resident. As part of the EIR framework, the 

EHR data is linked to the WSN database so that sensor data 

can be automatically annotated using health data.  

III. SENSOR SEQUENCE REPRESENTATION METHODS 

In TigerPlace we used two sensor sequence representations: 

a multidimensional time series made of aggregated hit values 

and a unidimensional discrete sensor sequence made of 

individual time-stamped hits.  

A. Multidimensional time series (MTS) representation 

The MTS representation was based on aggregating the hits 

of each sensor in a certain interval (15 min, hour or part of a 

day). The dimension of the time series was given by the 

number of sensors considered. Sometimes, we aggregated the 

firings of a set of sensors (e.g. all motion sensors in the 

apartment) to reduce the dimensionality of the resulting time 

series. An example of daily firing sequence for all PIR motion 

detectors from a TigerPlace apartment is shown in Figure 2. 

 

Fig. 2. A typical daily motion sensor firing sequence: each bar represents 

the daily sum of motion firings in the entire apartment for a given resident. 

 

B. Unidimensional time series (UTS) 

Our UTS representation of sensor sequences has a 

bioinformatics inspiration. Formally, a discrete sensor 

sequence can be defined as T1={(C1 t1), (C2 t2),  …, (Cm tm)} 

where Ci are a set a symbols from an alphabet Σ associated to 

the deployed sensors and ti is the time when firing Ci was 

recorded. Several examples of representations for symbolic 

sequences can be seen in Figure 3. 
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 Fig. 3. a) An example of sensor sequence with 6 firings; b) same sequence 

represented using a user defined alphabet; c) a more complicated sequence 

represented using a user defined color code. 

 

For sensors that have native discrete firings, such as the PIR 

motion sensors (see Bathroom and BedroomMotion firings in 

Figure 3.a), this representation is natural. However, for sensors 

that produce continuous values (such as Pulse and Breathing) 

we need to provide a discretization scheme such as: Breathing1 

= Breathing < 10 breaths/min, Breathing2= Breathing < 30 

breaths/min and Breathing3= Breathing > 30. Similarly Pulse 

and Bed Restlessness were discretized using three and four 

intervals as [0, 40, 100, …] beats/min and [0,4,7,15,…] s, 

respectively. For example, Pulse2 fires when Pulse is between 

40 and 100 beats/min and BedMotion3 fires when the resident 

moves in his bed between 7 and 15 s. The advantage of this 

discrete representation is that it avoids defining a multi-

dimensional time series distance which might be a complicate 

problem mainly when the number of sensors is large. 

Moreover, it avoids aggregating hits in certain time intervals 

(hourly for example) which can improve prediction accuracy. 

Note that in Figure 3.b the sensor representation looks like 

an amino acid sequence with two differences: it has an 

associated time (symbols are not equidistant), and it may have 

more than 20 symbols. In fact, if the size of the alphabet Σ is 

less or equal to 20, one can directly use bioinformatics tools 

such as sequence similarity (BLAST, Smith Waterman) and 

motif finders (MEME), by ignoring the temporal dimension. 

For considering the temporal dimension, in [15, 16] we 

proposed a temporal Smith Waterman (TSW) algorithm for 

computing the similarity between two discrete sensor 

sequences.  

IV. EID/EIR METHODS IN TIGERPLACE 

A. EID: Health alerts based on single sensor values 

Using the MTS representation described in section III.A we 

computed the distribution of the normal sensor values for each 

dimension of the time series [8, 17]. For sensor i we assume 

that the values in the near past (two weeks) follow a 1-D 

Gaussian distribution with mean i and standard deviation i. 

If a recorded value for sensor i is a number n of standard 

deviation i away from the mean, we send an alarm to the 

clinical personnel. For example, in TigerPlace, we used n=2 

for respiration, n=3 for restlessness and n=4 for pulse. The 

alerts were evaluated using feedback from the clinicians [7, 8]. 

The clinician receives an email with two links: one to the full 

data display and another to the evaluation system where the 

alert is rated on a scale from 1 (not-useful) to 5 (useful). In 

TigerPlace experiments [17] this method had an area under the 

receiver operating curve (AROC) of about 0.4. This 

methodology is in fact an one-class classifier (a.k.a. anomaly 

detection) approach since it uses only sensor values from one 

class (normal days) to compute the Gaussian distribution. 

Aside of the poor performance, this alert methodology tends to 

send multiple messages for the same event, leading to a 

clinician information overload. 

B. EID: Health alerts based on multiple sensor values 

More complicated one-class classifiers (OCC) such as 

nearest neighbor (OCCNN), support vector machine 

(OCSVM) or Gaussian mixture (OCGM) [18,19] can be used 

if more sensor dimensions are employed. For example, in [19] 

we used 4 sensor values, namely, low pulse (Pulse1), low 

breathing (Breathing1), bed restlessness (BedRestlessness1), 

and overall motion with OCCNN and OCSVM for EID. The 

feature vector had 8 dimensions: features 1-4 were the sum of 

the 4 sensor firings for the night hours (7pm-7am) and features 

5-8 were the sum for the day hours (7am-7pm). On a pilot 

dataset, OCCSVM proved to be better than OCCNN 

(AROCOCCSVM was about 0.65, AROCOCCNN about 0.55). 

Moreover, both multidimensional OCCs were better than the 

1-D OCC described in section IV.A (AROC about 0.4). 

C. EID: Health alerts using sensor sequence similarity 

An alternative anomaly detection strategy is to exploit the 

similarity between sensor sequences when using UTS 

representation [20]. The main idea of this approach is that 

sensor sequences cased by abnormal behavior are probably 

very dissimilar from the one recorded in recent resident past. 

The key concept of this approach is a similarity measure 

between sensor sequences like the TSW [15, 16] mentioned in 

section III. Given n (past) normal sensor sequences {Si}i=1,n we 

compute the pair-wise similarities between them, {sij}i,j=1,n 

using TSW [20]. We, then, calculate the distribution of the {sij} 

similarities of these “normal” days assuming they follow a 

Gamma distribution. Example of daily sensor sequence 

similarity distributions for three TigerPlace residents can be 

seen in Figure 4. 

 

Fig. 4. The Gamma distribution of the daily similarity for three TigerPlace 

residents [20]. 
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The distributions look somewhat Gaussian, although better 

results were obtained using a Gamma distribution instead. 

Assume that we found that {sij} follow a Gamma distribution 

with parameters a and b, i.e. (sij,a,b). To classify an unknown 

sequence Sx, we start by computing its similarities with all 

normal sequences S1,…Sn, obtaining similarities {six}i=1,n. 

Then, we find their maximum sx=max{six}. The confidence 

that Sx is abnormal, C(Sx) is 0 if sx > a/b and equal to 1-P where 

P=(sx,a,b). 

This approach resulted in an AROC performance of about 

0.75 on our pilot datasets. Anomaly detection based on sensor 

similarity may lead to better results than the previous OCC 

approach due to the sensor representation method, UTS vs 

MTS, as sensor aggregation in MTS may lead to information 

loss. In the same time, the choice of distance in a MTS space 

is still a difficult problem due to sensor value heterogeneity 

that requires a trial-and-error approach to finding the best one. 

D. EID: anomaly detection based on missing frequent normal 

patterns (MFP),  

The weakness of the above approach is that is based on day 

long (24 h) sequences, Si, which are not granular enough to 

describe the activities of daily living (ADL) of the TigerPlace 

residents. The question is: can we find those sub-sequences 

(denote here as “motifs”) that correspond to frequently 

performed activities, also denoted as frequent paterns (FP)? 

While activity recognition based on some classifier such as 

SVM, Hidden Markov Model would result in better activity 

recognition performance, this approach is not suitable for 

monitoring systems, where it is hard to collect the data and 

train a system for each monitored person. Instead, we used a 

similar approach to the bioinformatics “frequent motif 

discovery” used in algorithms such as MEME [21]. In the first 

approximation, we neglected the time between firings, so our 

sequences were identical to amino acid ones. In Figure 5.a [22] 

we show an example of a daily sequence in Fasta format, used 

for MEME [21] input. In Figures 5.b and 5.c we show 2 

bathroom FAPs computed by MEME represented using a 

sequence logo approach: the size of each letter (sensor) is 

proportional to the probability of that sensor firing in the given 

location. We see that in some days (5.c), the resident showers 

less than in others (5.a): “S” is smaller in 5.c than in 5.a. 

 

Fig. 5. (a) Example of input to the MEME tool: a day-long sensor sequence 

in fasta format where each letter denotes a sensor; (b) example of MEME 

output: shower activity motif. S=shower sensor, T=bathroom sensor, 

G=cabinet sensor; (c) example of MEME output: night bathroom visit. 

A=living room motion sensor. [22] 

Other methods, such as frequent T-patterns [23], can be used 

to find FPs in temporal sequences. Activity recognition 

experiments performed on bathroom motifs extracted from 3 

TigerPlace residents achieved an AROC of about 0.8, which is 

a 5% improvement over the approach based on a day-long 

sequence. 

To perform EID using a sensor network, we need to identify 

FPs in recent past data (say last two weeks). Note that we don’t 

need to know the identity of the FPs (i.e. what activity they 

represent), just that they repeat as part of the resident normal 

daily/weekly routine. The missing frequent pattern (MFP) 

framework [22] assumes that if a given day is missing some 

number of FPs, then the resident might be facing a health 

problem. MFP method is another take on anomaly detection 

and it is unsupervised since we don’t need to know which days 

are abnormal or the identity of the frequent patterns. 

E. EID: anomaly detection based on abnormal frequent 

activity patterns (AFAP), 

The AFAP framework is similar to the MFP one, but instead 

of using frequent normal patterns, it is based on abnormal 

frequent abnormal patterns, that is FP extracted from abnormal 

days. AFAP and MFP can be run together synergistically: first 

MFP is used to find abnormal days. These days can in turn used 

to extract FP related to abnormal behavior. After a significant 

number of abnormal FPs are accumulated, they can be further 

used to detect abnormal days. On a retrospective study on three 

TigerPlace residents [23] using the AFAP framework, we 

obtained an AROC of about 0.7. A day was declared abnormal 

if three abnormal patterns would be found in that day. The 

patterns were identified using a TSW similarity with a 

threshold of 0.9. 

F.  EIR: based on sensor similarity and EHR data [16] 

Sequence similarity based inference methods have been 

extensively used in bioinformatics. For example, a "guilt by 

association" approach (also known as “annotation”) is used to 

find molecular functions for unknown gene products by 

comparing their amino acid sequence to sequences of known 

proteins. In our case, given a database of sensor firings and 

related health data (from the integrated EHR and WSN, see 

Figure 1) we can infer current health events that have been 

associated in the past with sequences similar to the one in 

question [15]. Formally, given M pairs of sensor firing 

sequences (from WSN) and their associated conditions (from 

EHR), {Si, Ci}i=1,M, we can infer the conditions associated to 

an unknown sensor firing sequence Su by computing the 

similarity si=sim(Su, Si) using for example the TSW similarity 

 

 

 

 

 

 

Fig. 6. EIR using sensor sequence similarity: since S3 is more similar 

to S1 than S2, than S3 is most likely “UTI”. 



measure mentioned in section III. That is, we associate the 

unknown sequence Su with medical conditions for which the 

related similarity si was greater than some threshold (0,1). 

We illustrate the idea in Figure 6, where the cause of the 

behavior captured by S3 might be urinary tract infection (UTI), 

since S3 is most similar to S1 and not S2. 

Since this framework uses EHR data that is usually acquired 

when a nursing visit (hence an abnormal behavior) happens, it 

is complementary to the previously described methods. That 

is, knowing that the day is abnormal, what else can we say 

about it? 

In [15] we showed some results obtained on a pilot dataset 

from three TigerPlace residents. The characteristics of the 

dataset are shown in Table I. 

 

Table I. Characteristics of the TigerPlace pilot dataset 

Resident # # of sensor 

days 

# of comments # abnormal 

days 

#1 440 83 81 

#2 745 44 35 

#3 500 499 335 

 

We extracted the medical terms from the EHR nursing 

comments using Unified Medical Language System (UMLS) 

MetaMap (http://www.nlm.nih.gov/research/umls/) and 

mapped them to UMLS concepts. Each day was represented 

using a time series or sensor hits (UTS). The similarity 

between days was computed using TSW. For the above dataset 

we obtained an annotation average precision of 0.64 and a 

recall of 0.37. 

Using a day-long sequence to capture the link between the 

sensor data and nursing comments is too coarse: it may happen 

that the behavior related to the illness present in the nursing 

notes was not present the entire day. We illustrate the problem 

in Figure 7.   

Fig. 7. Uncertainty of behavior location: it is hard to tell which pattern 

caused the symptoms captured in the EHR notes “chest pain”. It is probably 

the “rectangle” pattern. 

 

In Figure 7, we show multiple frequent patterns associated 

with various EHR concepts. Whereas we have the same EHR 

concept on May 1 and May 2, it would be incorrect to associate 

“Chest pain” with all the patterns from those days (rectangle, 

oval and triangle). In our example, the most probable FP 

associated to “Chest pain” is the rectangle FP. 

In [25] we showed a possible solution to this problem based 

on multiple instance learning [MIL]. MIL is a supervised 

learning method in which individual labels for each training 

example are either hard to assign, such as labeling people in an 

image, or not available, such as in which hour of the night the 

resident didn't feel well.  Instead, it is much easier to obtain 

labels for sets of objects (in our case a day) called bags, and 

then labeling the entire bag with a given label. In [25] we only 

used normal/abnormal labels, but MIL can be extended to 

multiple labels (classes).  

 

G. EIR: blood pressure variation prediction. 

In elderly, some medical condition such as hypertension or 

diabetes have a great influence on their behavior. In such cases, 

it is possible to correlate the sensor data to the medical 

condition. For example, in [24] we used bed and motion sensor 

data to predict the pulse pressure (the difference between 

systolic and diastolic pressures) trend in elderly residents with 

hypertension. We conducted a retrospective pilot study on two 

residents of the TigerPlace aging in place facility, with age 

over 70 and blood pressure measured between 100 and 300 

times during a two year period. The blood pressure values were 

manually extracted from the nursing visit reports present in our 

EHR. A robust regression model was used to compute the 

pulse pressure (see Figure 8) based on the total number of 

motion and bed sensors hits during the night and day time, 

respectively (4 features). The pilot study suggested that pulse 

pressure trends can be reasonably well estimated (average 

relative error of less than 10%) using a bed and PIR motion 

sensors. 

 

Fig. 8. Comparison between the computed (red) and measured (blue) pulse 

pressure (systolic-diastolic) for a male resident [24]. 

V. CONCLUSIONS 

In this article we reviewed several early illness 

recognition/detection algorithms experimented in TigerPlace, 

our living laboratory from Columbia, MO, USA. Each 

methodology has its own positive and negative aspects. To get 

an idea of the performance of each method, we provided an 

approximate value of the AROC obtained on some TigerPlace 

dataset. Since the datasets were not identical for all methods, 

the value of the AROC has to be taken with a grain of salt.  

Most of the above methods complement each other, hence 

the best EID strategy would be to use more than one at the same 

time together with some fusion methodology. For example, 

one can use multiple anomaly detection methodologies to find 

if a day is normal/abnormal and then use a voting scheme to 

decide the final label. 

Treating sensor data as sequences of symbols shows promise 

for EID/EIR and, more general, for activity recognition. Unlike 

bioinformatics sequences, the sensor ones have a temporal 

dimension. For example, when we used MEME, we ignored 

time (see figure 5). Consequently, new methods have to de 

developed for representation and detection of temporal 

sequence motifs. As bioinformatics motifs are usually 

conserved across individuals and even species, the question 
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arises if it is possible to identify similar (i.e. “conserved” as 

they are known in bioinformatics) activity motifs across 

individuals. This will greatly enhance the possibility of 

algorithm training and understand disease behavior in elderly. 
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