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Unobtrusive, Continuous, In-Home Gait
Measurement Using the Microsoft Kinect

Erik E. Stone∗, Student Member, IEEE, and Marjorie Skubic, Member, IEEE

Abstract—A system for capturing habitual, in-home gait mea-
surements using an environmentally mounted depth camera, the
Microsoft Kinect, is presented. Previous work evaluating the use
of the Kinect sensor for in-home gait measurement in a lab setting
has shown the potential of this approach. In this paper, a single
Kinect sensor and computer were deployed in the apartments of
older adults in an independent living facility for the purpose of
continuous, in-home gait measurement. In addition, a monthly fall
risk assessment protocol was conducted for each resident by a clin-
ician, which included traditional tools such as the timed up a go
and habitual gait speed tests. A probabilistic methodology for gen-
erating automated gait estimates over time for the residents of the
apartments from the Kinect data is described, along with results
from the apartments as compared to two of the traditionally mea-
sured fall risk assessment tools. Potential applications and future
work are discussed.

Index Terms—Depth camera, fall risk, gait, Kinect.

I. INTRODUCTION

R ESEARCH has shown the importance of measuring a per-
son’s gait [1] and that the parameters describing loco-

motion are indispensible in the diagnosis of frailty and fall
risk [2]. Additionally, studies have indicated that changes in
certain gait parameters may be predictive of future falls and ad-
verse events in older adults [3]–[6] and may precede cognitive
impairment [7]. However, current methods for measuring gait,
such as observation by a clinician with a stopwatch or evaluation
in a physical performance lab, often lead to sparse, infrequent
assessments and may not be representative of a person’s true
functional ability [8].

Systems capable of measuring gait parameters on a continu-
ous basis during normal daily activity could provide invaluable
information for a variety of purposes including automated fall
risk assessments, early detection of illness or change in health
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status, and better assessment of progress during rehabilitation
or change in medication. Furthermore, such systems could help
facilitate targeted medical interventions in a timelier manner
leading to better health outcomes.

A number of technologies exist or are being developed for the
purpose of continuous gait monitoring [8]–[17]. These technolo-
gies range from wearable accelerometer and gyroscope-based
devices to arrays of passive infrared (PIR) motion sensors in
the home. Based on responses from older adults [18], an ideal
system would be unobtrusive and not inconvenience the person
being monitored. As such, an ideal system would likely not re-
quire the older adult to wear any device or require the presence
or help of a technician or clinician.

Vision-based monitoring systems in the home offer a unique
set of characteristics to meet these criteria. First, vision-based
sensors offer the precision necessary to measure gait parameters
such as stride time and stride length, in addition to more coarse
measures such as walking speed, without the need for wear-
able devices. Second, vision-based sensors are ideally suited for
environmental mounting, offering continuous, unobtrusive mea-
surement in the home without inconveniencing the patient being
monitored. Finally, research has indicated that privacy concerns
of older adults to vision-based monitoring systems can be ad-
dressed by use of appropriate privacy preserving processing
techniques, such as silhouettes [19].

Recently, Microsoft released the Kinect sensor for the pur-
pose of controller free game play on their Xbox gaming system.
The sensor uses a pattern of actively emitted infrared light in
combination with a CMOS image sensor and IR-pass filter to ob-
tain a depth image that is generally invariant to ambient lighting.
The sensor offers a single, low-cost, vision-based sensor device
that allows for a three-dimensional (3-D) representation of the
environment. Earlier iterations of the paper presented in this
paper have investigated algorithms for measuring gait parame-
ters using the Kinect sensor without the use of skeletal tracking,
validating the measurements against a Vicon marker-based mo-
tion capture system in a laboratory setting, and extending this
approach to capture gait in real-world, dynamic environments,
specifically the homes of older adults [15]–[17].

This paper presents a methodology for and results from es-
timating the gait of older adults continuously, in their homes,
using a Microsoft Kinect sensor over a period of seven months.
First, a discussion of related work is presented. Second, the basic
setup and operation of the system is described. Third, a prob-
abilistic methodology for generating automated gait measure-
ments for the residents of the apartments is detailed. Fourth, data
captured in the apartments are presented and compared against
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a set of traditional fall risk assessment tools. Finally, there is a
discussion of the results and future work.

II. RELATED WORK

Wearable accelerometer and gyroscope-based devices for
measuring gait parameters as well as traditional tests of physical
function, such as the timed up and go (TUG) test, has been an
area of much research [12], [13]. In [12], researchers showed that
a variety of parameters derived from body-worn kinematic sen-
sors provided significant discrimination between patients with
and without a history of falls. Although such devices may be
ideal for supervised fall risk assessment, the fact that many older
adults are reluctant to use wearable devices because they con-
sider them to be invasive or inconvenient [18], combined with
the need to change batteries, etc., may make wearable devices
problematic for long-term continuous monitoring.

In [9], researchers developed and validated a method for con-
tinuous measurement of in-home walking speed using an array
of unobtrusive, environmentally mounted PIR motion sensors.
The array of motion sensors is mounted on the ceiling in a hall-
way, or other natural walking path in the home environment, and
allow for the accurate measurement of walking speed when a res-
ident walks along the path. In [8], researchers were able to show
that these in-home walking speeds were associated with sev-
eral neuropsychological and motor performance tests and that
they allowed the calculation of previously unattainable metrics
of physical function. However, such a PIR-based system does
have limitations. For example, in multiresident homes distin-
guishing between residents can be problematic as the only fea-
ture available is walking speed [10]. Furthermore, finely grained
measures, such as stride time and stride length, could provide
information key to early illness detection as well as automated
fall risk assessment.

Much research has also been done in the area of markerless
motion capture systems [20], which typically use three or more
cameras to construct a three-dimensional model of a person
being observed. While such systems have been shown to be quite
accurate, the need to position and calibrate multiple sensors,
along with the additional required processing power, limits their
suitability for low cost, long-term, in-home monitoring.

Recently, researchers have developed several methodologies
for examining gait using the Microsoft Kinect sensor. In [21],
researchers used the Kinect to characterize the asymmetry of
participants’ gait while walking on a treadmill, with the goal of
using the system as a screening tool in clinical settings rather
than in patients’ homes. In [22], researchers made use of the
Microsoft Kinect SDK and a machine learning framework to
generate signals typically seen from wearable gyroscopes. How-
ever, due to the limited range of the skeletal tracking built into
the Kinect SDK (currently 4 m), such a system would be fairly
constrained for monitoring in a home setting.

III. SYSTEM OVERVIEW

In [15], the Microsoft Kinect sensor was evaluated for the
purpose of passive, in-home gait measurement in a lab setting.
This evaluation consisted of developing algorithms for extract-

Fig. 1. (a) Kinect and computer (inside cabinet) as deployed in apartments.
(b) Example depth images and extracted foreground during a walking sequence
in an apartment. (c) Three-dimensional model of person obtained at selected
frames using extracted foreground. (d) Plot of correlation coefficient time series
of normalized ground plane projections during walking sequence (thin is raw,
thick is filtered); used to identify when steps occur. Local maxima correspond
to left steps, while local minima correspond to right steps. Algorithm details
and parameter definitions can be found in [15].

ing the gait parameters of walking speed, stride time, and stride
length from the Kinect depth imagery and comparing the gait
measurements obtained from the Kinect to those from a Vicon
marker-based motion capture system. The results of this evalua-
tion showed good agreement, along with good reliability of the
measurements from the Kinect. Specifically, the distributions of
the percentage error were found to be approximately –4.1 ± 1.1,
0.0 ± 2.9, and –2.9 ± 2.5 for walking speed, stride time, and
stride length, respectively.

In this paper, the Kinect sensor and a computer were deployed
in the homes of elderly residents at an independent living facility
as part of an IRB-monitored human subjects study. Fig. 1 shows
the Kinect sensor as mounted in one of the apartments. The
Kinect is placed on a small shelf a few inches below the ceiling
(height 2.75 m), above the front door. The computer is placed in
a cabinet above the refrigerator. This arrangement has proven to
be unobtrusive to the residents, with some indicating that they
do not notice the equipment after a short period of time.

The Microsoft Kinect SDK and the skeletal tracking it pro-
vides, is not used. Instead, the raw disparity values from the
Kinect depth stream are processed directly. The main reason for
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not using the Kinect SDK is the limited range of the skeletal
tracking, approximately 1.5–4 m from the Kinect. This range,
combined with the positioning of the Kinect, is insufficient to
capture walking sequences from beginning to end in many ar-
eas of the apartments, whereas the validated approach has been
shown to work at distances up to 8 m from the Kinect [15].

A brief description of system operation follows; the reader
is referred to [15]–[17] for a more detailed description. First,
foreground objects, represented as a set of 3-D points, are iden-
tified from each frame using a dynamic background subtraction
technique. Next, a tracking algorithm is used to track extracted
3-D objects across multiple frames. Walks are then identified
from the path histories of the tracked objects. A set of criteria
including path straightness, speed, duration, and distance are
used to identify suitable walks from the path histories. This is
done online in real time (15 frames per second). Current mini-
mum requirements for a walk are a relatively straight path of at
least 1.2 m, with a continuous minimum speed of 12.7 cm/s.

Walking speed is computed for every identified walk as it
relies on the movement of the centroid of the 3-D point set
representing an object. The height of the individual walking is
computed as the average of the maximum value in the vertical
direction measured at each frame of the walk. Due to issues
such as occlusion of the legs and bad segmentation, stride pa-
rameters cannot be extracted for every identified walk. Stride
parameters are only extracted for walks for which at least five
steps could be identified which met three screening criteria used
to eliminate invalid sequences: 1—the steps were extracted in
the correct temporal order (left, right, left, right, etc.), 2—the
maximum amplitude of the correlation coefficient time series
did not exceed 90, and 3—the difference between the maximum
and minimum stride times was less than the average stride time.
The reader is referred to [15] for a detailed explanation of the
algorithms and the definition of the correlation coefficient.

IV. METHODOLOGY

The output of the Kinect system is a dataset in which each
entry corresponds to a walk identified in the apartment. For
this paper, each entry is associated with the following features:
height of the person, walking speed, and, if possible, average
stride time, and average stride length, in addition to the time the
walk occurred. Thus, each walk xi is initially associated with
either two or four features:

xi =
{ {h, s} , if no stride data

{h, s, st, sl} , else
(1)

where h, s, st, and sl are height, walking speed, stride time, and
stride length, respectively.

In order to include the information from walks without stride
parameters in the computations, which due to furniture place-
ment, etc., may make up the majority of walks in some apart-
ments, stride time and stride length values are estimated for the
walks lacking them using the mean of the three nearest neigh-
bors with stride information.

As the systems are deployed in real-world environments, this
dataset will include walks from all the residents of the apartment,

as well as any visitors. As such, before any gait measurement
estimates can be performed, a procedure for identifying walks
from the specific resident (s) is necessary.

A. Resident Model Estimation

The current approach makes the assumption that each resident
will create a cluster, or mode, in the dataset, representing their
typical, in-home, habitual gait. These clusters are modeled as
Gaussian distributions in the four-dimensional (4-D) feature
space. The basic procedure is to fit a Gaussian mixture model
(GMM), λ = {ρr , μr , Σr}, r = 1, . . ., K, with the number of
distributions K equal to the number of residents in the apartment
to the dataset X = {x1 , . . ., xN }

p(xi |λ) =
K∑

r=1

ρrg(xi |μr ,Σr ) (2)

where g(x|μr ,Σr ), r = 1, . . ., K, are the multivariate Gaussian
distributions, and ρr , r = 1, . . ., K, are the mixture weights.

The Gaussian distribution representing each resident is used
to identify walks from that resident. Any walk whose likeli-
hood given a distribution is greater than a threshold is assumed
to be from the resident that the distribution represents, and is
used in computing gait parameter estimates for that resident.
The classification is done independently for each distribution.
Thus, a walk could be included in the estimates of more than
one resident, if the distributions overlap. The steps of model
initialization and updating are described later and illustrated in
Fig. 2.

1) Resident Model Initialization: The mean of each distri-
bution in the GMM is initialized by matching it to a mode in
the dataset. Modes are identified by locating local maxima in
a smoothed 4-D histogram. The heights of the residents, which
are measured a priori, are used to associate each of the distri-
butions to one of the identified modes. If too few modes that
match the known heights of the residents are found to allow a
unique correspondence between modes and distributions, then
multiple distributions may be initialized to the same mode, re-
sulting in the same estimate being used for multiple residents in
an apartment.

If no modes are found that closely match the known height
of a resident, than the model cannot be initialized. Such a case
would indicate that more data are needed to initialize the model,
or that the resident does not walk frequently enough in the
apartment to allow such a modeling approach. The covariance
matrix of each distribution is initialized to a predefined value
(a diagonal matrix with variances of (2.5 cm)2 , (7.5 cm/s)2 ,
(0.05 s)2 , and (7.5 cm)2 , for height, walking speed, stride time,
and stride length, respectively), and each distribution starts with
equal weighting in the GMM.

2) Resident Model Updating: Given a dataset of walks, an
iterative process is used to update the model parameters. First,
all data points with a Mahalanobis distance greater than D (2.85)
from the GMM are pruned from the dataset. This step rejects out-
liers from the estimate. Second, an expectation–maximization
(EM) algorithm is used to update the model parameter estimates,
given the current model estimate as a starting point. These two
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Fig. 2. Illustration of model initialization and updating for two apartments.
Each dot corresponds to a walk identified in the apartment over a six-week
time period. (a) and (e) Resident model initialization using clinically measured
height(s) and a priori covariance matrix; (b), (c), (f), and (g) refinement of
model based on dataset (after iterations 1 and 3), and (d) and (h) final estimate.
In (a) and (e), the entire dataset is displayed; for the rest the pruned dataset
is displayed. Although only two dimensions are shown, the process uses all
dimensions of the dataset.

steps are repeated until the change in the negative log likelihood
is less than ε, or a maximum number of iterations have occurred.

Following this iterative procedure, if the absolute change in
the mean of a distribution is above a threshold, or the height
associated with the distribution is no longer close to the known
height, which is updated slowly over time, of the resident the
distribution represents, the update is rejected. If the change in
the mean is acceptable, then the covariance matrix is scaled, if
necessary, to meet a set of constraints that bound its range.

a) Gait Parameter Estimates: Given a resident model,
θr = {μr , Σr}, estimated from a dataset, X = {x1 , . . ., xN },

walks belonging to the resident are selected from a dataset Y =
{y1 , . . .,yM } (typically a subset of X), based on their likelihood
given θr :

f(yi |θr ) = g

(
yi |μr ,

∑
r

)/
g

(
μr |μr ,

∑
r

)
. (3)

All walks with likelihood greater than or equal to thresh-
old T (0.135) are assumed to be from the resident the model
represents. This set of selected walks Ar is used to estimate
in-home, habitual, gait parameters for the resident, assuming its
cardinality |Ar | is greater than αr

αr = ρrη(wn)β (4)

where ρr is the mixture weight of θr in λ, η is the percentage of
dataset X used in the final estimate of λ, w is the median number
of walks per day in the apartment calculated from dataset X,n
is the number of days dataset Y spans, and β is a constant
parameter (β = 1/6 for this paper). If this threshold on the
cardinality of Ar is not met, then no estimate is made as the
number of walks from the resident in Y is insufficient.

Assuming |Ar | > αr , the weighting, ui , for each walk, ai ∈
Ar , is computed as follows:

ui =
min(walk length(ai), tl)

tl
(5)

where tl is a constant (2.1 m). Equation (5) reduces the contri-
bution of short walks, which are not as useful for measuring gait
parameters. The final estimate, g_estr , is a weighted average of
all walks ai ∈ Ar

g estr =
∑|Ar |

i=1 uiai∑|Ar |
i=1 ui

. (6)

The upper and lower quartiles of Ar are used as a gauge of
variation. This is shown in Figs. 3 and 4.

Earlier work using three weeks of labeled data and a pre-
liminary version of this methodology proved very effective
at selecting walks from the resident in single resident apart-
ments, and in multiple resident apartments where the residents’
modes were sufficiently separated as a result of differences in the
measured parameters [16]. Specifically, in three single-resident
apartments, 100% of the labeled walks used to compute gait
parameters were from the resident of the apartment. In a two-
resident apartment where the residents’ modes were well sepa-
rated, 94.6% of the labeled data used to compute gait parame-
ters for the first resident were from the first resident, and 97.7%
of the labeled data used to compute gait parameters for the
second resident were from the second resident. As one would
expect, the automated gait parameter estimates matched very
closely to those computed manually using all the labeled walks
of the residents. In the future, additional features, such as shape
descriptors, could be added to improve walk classification in
apartments with multiple residents who have similar physical
characteristics.

3) Trends: Trends in the gait parameters of a resident are
computed by applying the resident model estimation and gait
parameter estimation steps with a sliding window approach.
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Fig. 3. Illustration of sliding window approach used to generate trends in gait
parameters for an apartment. (Top) Change in resident model over six months
time period. Plots show current model estimate and two weeks of walk data
from specified time period. (Bottom) Parameter trend estimates over six month
period. Error bars extend from the lower quartile to upper quartile. A six-week
window was used for the model estimation step, and a two-week window was
used for the parameter estimation step.

The resident model is initialized and updated using data from
a given time period (typically two to six weeks). Next, the gait
parameter estimation step is performed using some subset of the
data used for model estimation (typically the most recent one to
two weeks). The window for both the model estimation and gait
parameter estimation steps are moved forward one day, and the
process is repeated, with the previous model estimate being used
as the starting point for the update procedure. The end result is
a time series of daily gait parameter estimates representing the
trend in gait parameters, and a model estimate that adapts to the
data over time. This is illustrated in Fig. 3.

For this paper, window sizes of six weeks and two weeks
were used for the model and gait parameter estimation steps,
respectively. These were selected such that, for all apartments,
a sufficient number of walks were included to allow accurate

resident modeling, and to smooth the gait trends so long-term
changes were emphasized over short-term fluctuations. Ideally,
these windows sizes would be varied based on the number of
walks that occur in an apartment, how well separated the modes
of the residents are, and what information is to be extracted, i.e.,
short-term changes or long-term trends.

V. RESULTS AND ANALYSIS

The Kinect system with walk identification and gait measure-
ment has been deployed in 12 apartments with 15 residents as
part of an ongoing, IRB approved, study. The apartments are
located in an independent care facility for older adults, in the
actual homes of the residents. Ages of the residents range from
67 to 97 years, and six are male. Multiple residents used an
assistive walking device during some part of the study.

For this analysis, data from the Kinect systems is shown
along with two traditional fall risk assessment tools: habitual
gait speed (HGS) and TUG time [23], as measured by a clini-
cian. The HGS and TUG tests are conducted using a walking
path of 10 feet, and HGS is an average of two walks. These tests,
along with others such as the short physical performance battery
(SPPB) [24], are administered in the homes of the participants
on a monthly basis as part of a fall risk assessment protocol.
This monthly assessment protocol forms a best estimate, using
traditional measures, of the participant’s level of physical func-
tion and fall risk. These data are used for comparison purposes
against the in-home Kinect data. However, all of these clini-
cally assessed measures are not recorded every month for every
resident due to participant unavailability and/or the participant
being physically unable to complete the assessments. This dif-
ficulty in collecting data on a monthly basis further illustrates
the need for passive, continuous monitoring.

Fig. 4, in addition to Fig. 3, provides visualizations of the data
for a selected subset of residents of the 12 apartments. In the
majority of the cases, the in-home gait parameter trend lines are
generally stable, suggesting little or no change in the physical
function of the residents during the study. Fig. 4(a) serves as
a representative example for these cases. However, two cases
in which changes are indicated in the in-home gait data, along
with two cases involving multiple residents in an apartment,
have been selected for visualization and additional discussion.

The first of these cases is shown in Fig. 3. This resi-
dent was admitted to the hospital needing femur surgery on
September 3, 2011 (before monitoring was active) and returned
to her apartment after rehab on October 25, 2011. Upon return-
ing to her apartment, the resident continued intensive physical
therapy while using an assistive walking device for a short period
of time, before eventually making a full recovery. This period
of recovery is captured in the gait parameter data as increasing
walking speed and decreasing stride time, and in the standard
fall risk measures as increasing HGS and decreasing TUG time.
This case illustrates the potential effectiveness of these systems
for continuous, in-home rehabilitation monitoring.

The second of these cases is shown in Fig. 4(b). This resident
was monitored beginning in October 2011. He used an assistive
walking device almost exclusively while he was included in the
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Fig. 4. Gait parameter trends for selected subset of residents included in the study. Each box corresponds to an apartment and each graph to a resident. Error bars
extend from lower quartile to upper quartile. In (d), the same mode (and thus model) is used to represent both residents as two separate modes are not differentiable
in the data. A six-week window was used for the model estimation step, and a two-week window was used for the parameter estimation step.

study, had a small apartment with one viable walking path, and
had a number of visitors such as aides and family in addition
to cleaning staff. Given this environment, the Kinect system
was still able to successfully identify walks of the resident and
generate stride parameter estimates.

At the end of February 2012, he left for an extended stay at
another facility before returning to his apartment for two short
time periods during April and May that were separated by a
hospitalization. He ultimately passed away, in his home, near the
end of May 2012. During these short returns to his apartment,
this resident was mostly bedbound, resulting in too few data
points for updated gait parameter estimates to be made. Using
the methodology described in Section IV, he appears to have a
noticeable decrease in stride time prior to his initial departure
from the apartment. Although this is a single case, changes of
this nature could potentially be used to generate automatic alerts
to care providers indicating possible health changes.

The last two of these cases are shown in Fig. 4(c) and (d)
and are residents from multiresident apartments included in
the study. In the case of Fig. 4(c), which also corresponds to
Apartment II in Fig. 2, the residents are of sufficiently different
heights to allow modeling of their individual modes in the data
from their apartment, with no overlap of the distributions, given
a time window of six weeks. The large number of walks in the
apartment further facilitates clear identification of the modes.

In the case of Fig. 4(d), the residents are very similar in height,
within 5 cm, and physical function. Furthermore, due to the size

and layout of their apartment, very few walks, only 13% of
the number found in the previous case, are identified. Thus, the
same mode is used to represent both residents as their individual
modes are not discernable in the data. This last case illustrates
the need for additional features, such as shape descriptors, for
accurate walk classification in multiresident apartments with
residents of similar physical characteristics and/or multiresident
apartments with few data points.

Finally, as the graphs in Figs. 3 and 4 indicate, clinically
measured HGS can differ substantially from the continuous,
habitual, in-home walking speed measured by the Kinect. This
is consistent with other findings that suggest every day, in-home
activity differs from that observed during explicit performance
testing [8], [11].

VI. DISCUSSION

As shown in Section V, the Kinect-based gait analysis sys-
tems deployed in the apartments of elderly residents in an inde-
pendent living facility were able to continuously, unobtrusively
identify walks and automatically generate in-home gait parame-
ter estimates for the residents. This was achieved in both single-
and multiresident homes and in the presence of visitor walks.
Furthermore, stride parameters were obtained from walks of res-
idents who used an assistive walking device. Lastly, the potential
cost of the Kinect-based systems is relatively minimal.
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An earlier analysis [16] indicated that a methodology of fitting
a GMM with the number of distributions equal to the number
of residents to the 4-D feature space formed by walking speed,
stride time, stride length, and height was successful in filtering
out the majority of walks which did not belong to the resident(s),
thus allowing accurate gait parameter estimates to be made. This
approach was more thoroughly developed and presented in this
paper. However, this approach relies on the resident(s) walks in
the apartment forming a mode in the feature space.

In multiple instances, gait parameter estimates were able to
be made from residents using assistive walking devices. This
is largely due to the fact that the assistive devices do not sig-
nificantly occlude the legs of the resident, especially when the
resident is walking away from the Kinect. As a result, few points,
as compared to the number of points returned from the legs, are
returned from the assistive device, causing little impact on the
gait measurement algorithms.

The precision of the Kinect measurements has been found
to decrease significantly with distance [15], [27], and strong
sunlight has been found to overpower the Kinect. As shown by
the results in [15], the issue of decreasing precision does not
prevent the accurate measurement of gait parameters given the
algorithms used here. Additionally, the position of the Kinect
on an interior wall, such that a person walking will, generally,
be between the Kinect and the source of sunlight allows mea-
surements to still be made with limited complications (the hair
and head of a person may not return measurements).

The graphs shown in Fig. 2 and the top of Fig. 3 indicate
large variances in the height of the residents, beyond what one
might expect. This large variance is due to a number of factors,
including: whether a resident is wearing shoes, whether strong
sunlight is preventing measurements of the hair and/or head,
changes in a resident’s posture from one walk to another, the
accuracy of the floor plane estimation used to judge height, and,
finally, the precision of the Kinect measurements themselves.
Whereas the algorithm that extracts stride parameters averages
together many pixels from each leg, the height of a person at
each frame is, essentially, dependent on a single measurement.
These factors can cause significant variation depending on the
apartment.

The size and layout of an apartment, the positioning of the
Kinect, and the amount of clutter (furniture, etc.) in the environ-
ment, can greatly impact the number and quality of the walks
identified. Care must be taken to position the Kinect such that is
has an unoccluded view of at least one regularly used walking
path. For this paper, the area in front of the door above which
the Kinect was mounted was always clear, yielding at least one
walking path in each apartment.

Additional research is being conducted to investigate the
quantitative relationship between the habitual, in-home gait pa-
rameters measured by the Kinect systems and the traditional,
clinically assessed fall risk assessment protocols. As indicated
by the graphs in Fig. 4, these traditional measures tend to show
significantly more variation from month to month than the
in-home gait parameters measured using the Kinect. A num-
ber of studies have investigated the test–retest reliability of the
TUG test among various populations of older adults, and found

significant intraindividual variation between sessions [25], [26].
Therefore, even though these traditional performance measures
are useful for detecting changes in populations, their usefulness
for detecting changes in an individual is limited. Even relatively
large changes may not indicate a true change in physical func-
tion, but simply reflect normal variation, or noise, in the measure
itself. The improved stability of the continuous, in-home gait pa-
rameter estimates may make them more suitable for this change
detection than these traditional measures.

Finally, current goals include: developing automatic, daily fall
risk assessment reports, evaluating the usefulness of in-home
gait measures for detecting early signs of changes in health
status (including additional parameters not discussed in this
paper such as stride-to-stride variability), developing methods
for presenting the gait information back to residents in a clear,
understandable format, and providing the information to nurses
or care providers as part of an existing eldercare health alert
network.
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