
  

 
Abstract²Methods and experimental results are presented 

for interpreting 3D spatial language descriptions used for 

human to robot communication in a fetch task. The work is 

based on human subject experiments in which spatial language 

descriptions were logged from younger and older adult 

participants. A spatial language model is proposed, and 

methods are presented for translating natural spatial language 

descriptions into robot commands that allow the robot to find 

the requested object. Robot command representation and robot 

behavior are also discussed. Experimental results compare path 

metrics of the robot system and human subjects in a common 

simulation environment. The overall success rate of the robot 

trials is 85%. 

I. INTRODUCTION 

A growing elderly population and shortages of healthcare 

staff have created a need for autonomous agents capable of 

performing assistive tasks. Recent studies [1] have shown 

that seniors want assistive robots capable of performing 

household tasks, such as the "fetch" task. Older adults also 

prefer a natural language interface [2] when interacting with 

robots. In this paper, we present methods and experimental 

results for interpreting 3D spatial language descriptions used 

in a fetch task. 

Robot understanding of spatial language has been 

explored previously. Much of the work has focused on 2D 

navigation. For example, Gribble et al [3] proposed using the 

Spatial Semantic Hierarchy [4] to represent and reason about 

space, using commands such as ³JR�WKHUH´ and ³WXrn right´. 

There is a body of work on understanding 2D route 

instructions for guiding an agent or robot through an 

environment [5][6][7][8]. Tellex et al. also consider 

manipulative commands that move beyond the 2D ground 

SODQH��H�J��� ³put the pallet on the truck´ [8]. This work has 

informed our project; however, it is focused on the more 

general natural language processing (NLP) problem and is 

limited in addressing the perceptual and cognitive challenges 

of the fetch task. 

What separates our work from much of the related 

research is: (1) the integrated perceptual capabilities of our 

robot, (2) our support of 3D spatial relationships vs. the 2D 

representations others use, and (3) our human-centric 

approach. The perceptual capabilities of our robot, which 

include furniture and object recognition, bring it closer to 

being able to interpret language in a "human" way. The 

complex language with 3D spatial relationships warrants 

NLP and inference processes that model those of a human 

and are rooted in existing cognitive science research.  

Our goal is to interpret language used in the context of 

human-robot interaction. Natural, unconstrained language is 

notorious for a lack of punctuation, numerous stop-words, 

unnecessary repetitions and other elements that create noise 

and hinder interpretation. In this paper, we soften the noise 

by first exploring the use of templates created from 

transcribed spoken spatial language logged in studies with 

older and younger adults.  

We discuss the basis for these templates in Section II. 

Methods for interpreting the spatial language are presented 

in Section III. The human language model and our robot 

methods for interpreting the language have been designed 

for real spatial language as well as the template descriptions 

tested here; our proposed approach will be tested on "noisy" 

natural spatial language in the next phase of the project.  

In Section IV, an experiment is presented that compares 

the performance of humans with a robot in following spatial 

descriptions to fetch a target object. Various path metrics are 

introduced for comparing the performance. Results and 

discussion are included. We analyze some of the failures and 

discuss strategies that will be addressed in future work.  

II.  SPATIAL LANGUAGE MODEL 

A. Templates Derived from a Spatial Language Corpus 

In our previous work, we created a corpus of 1024 spatial 

language descriptions collected in a human subject 

experiment [15][16]. In the experiment, which was 

conducted in a virtual environment, 64 younger adult 

participants and 64 older adult participants were asked to tell 

a human or robot avatar where a given object was or how to 

get to it. The experiment was based on the idea of a user 

explaining to an assistant where or how to find an object for 

the purpose of fetching the item. Test manipulations 

included how vs. where instructions, robot vs. human 

addressee, and older adult vs. younger adult subjects.  

The resulting spatial language was analyzed, and 

templates were created to capture language structure that 

was common to the spatial language descriptions logged for 

each test manipulation. Then, using these templates, 

representative spatial descriptions were generated and used 

for the experiment presented in this paper. The templates 

also played a major part in the creation of our human spatial 

language model.  
The general structure of the templates was determined by 

examining syntactic differences across age (older/younger 

adults), instruction (how/where) and addressee 

(human/robot) manipulations. A significant difference that 

emerged was a function of instruction [18]. How 

descriptions were overwhelmingly dynamic, following a 

sequential, direction-like structure such as [Move] + 
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[Direction] + [Move] + [Direction] + [Goal]. For example, 

³*R�IRUZDUG��WXUQ�OHIW��JR�VWUDLJKW��DQG�\RX¶OO�ILQG�WKH�WDUJHW��

Where descriptions were more split, with a significant 

number of static descriptions, following a structure such as 

[Target] + [In] + [Room] + [Room Reference]. For example, 

³7KH� ERRN�ZDV� LQ� WKH� OLYLQJ� URRP�� DJDLQVW� WKH� EDFN�ZDOO�´ 

Result details can be found in [16]. 

To capture linguistic differences between age and 

addressee groups, word counts for spatial terms, house items 

and furniture items were calculated. Differences in the 

occurrence of given words for a given category (e.g. younger 

vs. older) were considered of importance when they 

occurred a minimum of ten times, and twice as often as a 

competing category. For example, older adults were more 

WKDQ� WZLFH� DV� OLNHO\� WR� XVH� ³GRRU´� DQG� ³WDNH´� LQ� WKHLU�

descriptions than were younger adults. These word count 

differences were used to modify the template structure 

defined by the instruction manipulation described above. For 

example, the younger adult template in the How-Robot 

condition contained the following description for the 

ORFDWLRQ�RI�WKH�JODVVHV�FDVH��³:DON�VWUDLJKW�DQG�WDNH�D�ULJKW��

*R�IRUZDUG�DQG�WXUQ�ULJKW�DQG�\RX¶OO�ILQG�WKH�JODVVHV�FDVH". 

Older adult templates in the How-Robot condition contained 

WKH�IROORZLQJ�GHVFULSWLRQ�IRU�WKH�JODVVHV�FDVH��³7DNH�D�ULJKW�

WKURXJK�WKH�GRRU��*R�IRUZDUG�DQG�WXUQ�ULJKW�DQG�\RX¶OO�ILQG�

WKH�JODVVHV�FDVH�´ Thus, the templates capture the differences 

observed in the different test manipulations, although some 

differences are subtle. 

The templates were also generated for different landmark 

conditions. The No-Landmark templates were unaltered. 

Goal-Landmark templates included a description of the table 

where the target object was located. For example, the Older-

How-Robot description for the glasses case would read, 

³7DNH� D� ULJKW� WKURXJK� WKH� GRRU��*R� IRUZDUG� DQG� WXUQ� ULJKW�

DQG�\RX¶OO�ILQG�WKH�JODVVHV�FDVH�on the table�´�Path-landmark 

templates included a description of a furniture item in the 

environment in addition to the table where the target was 

located. For example, the Older-How-Robot description for 

WKH�JODVVHV�FDVH�ZRXOG�UHDG��³7DNH�D�ULJKW�WKURXJK�WKH�GRRU��

*R�IRUZDUG�DQG�WXUQ�ULJKW�DQG�\RX¶OO�ILQG�WKH�JODVVHV�FDVH�on 

the table behind the couch�´� ,Q� DOO�� DFURVV� DOO� FDWHJRULHV��

there were 149 unique templates. There was some repetition 

across categories because of a lack of a meaningful 

difference between word counts. Because of this repetition, 

we examine the templates subsequently simply as a function 

of how/where and as a function of landmark type (none, 

goal, path). The other differences that emerged from the 

older vs. younger and robot vs. human addressee 

manipulations in the original study were not expected to be 

reflected in the path metrics used for comparing robot and 

human performance, due to the very subtle differences. 

B. Semantic Chunks 

The spatial language templates, derived from the spatial 

language descriptions observed in the fetch task, drove the 

development of our human spatial language model. The 

templates are essentially containers for certain components 

commonly found in spatial language. By identifying these 

components, we created a method for segmentation (or 

chunking) of spatial language. The lengthy and often 

complex spatial instructions can be broken up into smaller, 

meaningful parts (or chunks). Furthermore, these chunks can 

be nested to capture relations between them.  

Table I shows the chunks which constitute the proposed 

human spatial language model. Figure 1 shows an example 

of one of the spatial descriptions generated from a template 

that has been chunked using the model. Table I shows chunk 

types that include perspectives of both outside and inside the 

target room. The parts of each description are first 

differentiated based on whether or not the addressee is 

outside or inside the room at the time of execution. The first 

two chunk types are meant to provide information outside 

the room and determine room choice. The rest of the chunk 

types are meant to be interpreted within the room. This 

separation has roots in the works of Radvansky [17][18], 

who showed that humans appear to unload old and load new 

cognitive maps whenever they pass through a boundary 

between two enclosures, such as doorways.  

Next is the separation between targets and references. In 

the previous section, these were referred to as goal and path 

types. Each of the chunk types is either a target or a 

reference type. Targets indicate the goal states, which, in this 

case, are in the correct room near the furniture item with the 

target object. References are states that help the executor of 

the description achieve the goal state, for example, 

references to furniture items that are near the goal or 

descriptions of the path to the goal.  

Finally we further separated within-room instructions 

into three categories: room regions, furniture items, and 

small objects. This separation was motivated by both the 

human tendency to create hierarchies for objects and spaces 

based on their size, as well as the perceptual capabilities of 

our robot. Our robot can recognize furniture items and small 

objects; however, this recognition becomes more accurate 

when the robot knows whether it is looking for a small 

object or a furniture item. For parts of the description that 

refer to fixed walls or other structures in the room, the robot 

relies on a map of the environment rather than recognition 

capabilities. Therefore it becomes necessary, when 

interpreting spatial descriptions, for the robot to know when 

it needs to switch between different recognition modes. 

Also, larger furniture items such as a bed are less mobile and 

are more likely to stay in place, whereas small objects can be 

moved within and between rooms; over time, the robot could 

learn how to take advantage of such tendencies to improve 

the efficiency of the fetch. 

C. Static and Dynamic Differences 

The proposed human spatial language model is suitable 

for both static and dynamic spatial instructions, unlike 

related work [10][11][12], which concentrated on sequential 

dynamic instructions. Our spatial language corpus shows 

that static spatial language is often not sequential and many 

of the static spatial language instructions we collected 

started with the Object Target Phrase (OBTP) rather than 

information about the room in which the object is located. 

This was particularly prevalent in language used by older 

adults [16].  Because  we use semantic chunk labels,  we can  
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Figure 1. An instance of a chunked spatial description. Chunk types are shown in Table 1. 

rearrange the static descriptions into sequential order for 

ease in translation into robot commands. Methods proposed 

in [10], [11] and [12] which focused on inherently sequential 

directions would not be suitable for static descriptions where 

order is often arbitrary or reversed.  

TABLE I. CHUNK TYPES 

Chunk Type Explanation 

ORMTP Outside Room Target Phrase 

ORMRP Outside Room Reference Phrase 

FURTP Furniture Target Phrase 

FURRP Furniture Reference Phrase 

OBTP Object Target Phrase 

OBRP Object Reference Phrase 

IRMRP Inside Room Reference Phrase 

III. INTERPRETING SPATIAL LANGUAGE 

A. Modeling Spatial Relationships 

When people communicate with each other about 

spatially oriented tasks, they typically choose relative spatial 

references rather than precise quantitative terms, e.g., the 

eyeglasses are in the living room on the table in front of the 

couch [20]. Although natural for people, it is not easy for a 

robot to follow such a description. Providing robots with the 

ability to understand and communicate with these spatial 

references has great potential for creating a more natural 

approach for human-robot interaction [13]. In previous work 

[21], we used the histogram of forces (HoF) [22] to model 

spatial relationships and, thus, provide a method for 

interpreting spatial language references in human-robot 

interaction. The HoF can quantize the spatial relationship 

between two crisp or fuzzy objects by providing weights of 

different directions [22]. By providing a quantitative model 

of these relationships, the HoF can be used to translate 

qualitative spatial relationships into robot instructions. 

B. Modeling the Fetch Task  

The environment of the fetch task investigated here is a 

two-room home with a hallway between the rooms. The 

robot stands at the end of the hallway to wait for instruction 

before starting the task. To simplify the fetch task, we divide 

the process into three sub-tasks: (1) determine the target 

room and move to enter the room through the doorway, (2) 

move within the room to the place where the target object is 

located by following the spatial description, (3) search for 

the object around the goal location as specified in the spatial 

description. In the fetch task, the target objects are assumed 

to be on the surface of furniture items so that the robot does 

not need to search inside the furniture. The robot uses its 

local perception for navigation in this task. 

C. Reference-Direction-Target Model 

Because the robot has no prior information about the 

furniture and object placement inside the room, it needs to 

use the information provided by the spatial language 

description. Therefore, we propose a Reference-Direction-

Target (RDT) model to translate the spatial description into 

navigation information that can be used directly as a 

navigation command for the robot. The RDT model includes 

the three parts of Reference, Direction and Target, which 

together comprise a RDT node. The three RDT components 

represent all types of navigation instructions a robot may 

need in an indoor environment. We assume that the robot 

has a map of the environment structure, although we do not 

assume the robot knows where the furniture items are 

located within the rooms of the structure. 

Reference refers to the object or structure that is used in 

a relation. Several types of references are used in the fetch 

task, as described below. 

NONE ± No reference object is mentioned in the 

instruction, i.e., the robot action is not dependent on the 

REMHFWV� DURXQG� WKH� URERW�� )RU� H[DPSOH�� ³turn right´ or ³go 

forward´ are instructions with no reference.  

ROOM ± The room is used as a reference for navigation, 

e.g., ³PRYH� KDOIZD\� LQ´ or ³to the left of the room´�� 7KH�

Direction component then determines which part of the 

room is the destination. Using a sense of direction, e.g. from 

a compass, and prior knowledge of the room structure, the 

robot can move to the target area and search for the target 

object.  

WALL ± A wall is used as the reference, e.g., ³to the 

back wall´�� 7KH� URERW� QDYLJDWHs close to a wall and may 

search for the target object. 

ROBOT ± The robot itself is used as the reference. The 

reference object does not directly appear in the description, 

but rather ego-centric references are used, e.g., ³to the left´ 

or ³in front of you´��7KHse PHDQ�³WR�WKH�OHIW�RI�WKH�URERW´�or 

³LQ�IURQW�RI�WKH�URERW´�ZKLFK�XVHs the robot¶V local reference 

frame. 

FURNITURE ± A furniture item is used as the reference 

object. The reference frame that defines the direction differs 

for different types of furniture. These have been defined 

based on the results of our spatial language experiments. For 

H[DPSOH�� ³LQ� IURQW� RI� WKH� FRXFK´� LV� W\SLFDOO\� GHILQHG� XVLQJ�
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the intrinsic frame of the couch. The front side refers to the 

seating side of the couch independent of viewing angle. 

Direction represents the position relationship between 

objects and tells the robot where it should move to search for 

the target. For the different references described above, the 

meaning of direction is different. For NONE, the direction 

tells the robot the angle for motion with respect to the 

URERW¶V� ORFDO� UHIHUHQFH� IUDPH. For other reference types, 

direction shows where the robot should move, relative to the 

specified reference. For different types of navigation 

instructions, the reference frame for direction may be 

defined differently [14]. The directions used in robot fetch 

commands include: front, left, right, back side, and between. 

Table II shows the combinations of references and their 

corresponding directions. 

Target indicates the target furniture in the instruction or 

the reference of the target object. If there is not a target in a 

RDT node, the target is defaulted to be a table type furniture 

item. This is a natural assumption, in the context of the fetch 

task. 

TABLE II. REFERENCES AND CORRESPONDING DIRECTIONS 

Reference Category Corresponding Direction 

NONE Dynamic Front, Left, Right 

ROOM Dynamic Left, Right, Back 

WALL Dynamic Left, Right, Back, Side 

ROBOT Static Front, Left, Right, Back 

FURNITURE Static Front, Left, Right, Back, Between 

D. Translating Chunks into Navigation Commands 

For the fetch task, we manually built a dictionary of 

spatial language phrases for translating the words and 

phrases in the chunks to navigation commands that can be 

understood by the robot. The knowledge to build this 

dictionary is based on our human-robot spatial language 

experiments [15][18]. From the 3 sub-tasks described above, 

the information also has three parts: (1) target room, (2) 

inside-room navigation command, and (3) target object. 

They can be extracted by searching the words, phrases and 

their corresponding tags in the chunks from the dictionary of 

spatial language phrases. In the fetch task, the target room is 

extracted directly from the ORMTP and ORMRP chunks, 

and target object is extracted from the OBTP chunk. FURRP 

chunks, FURTP chunks and IRMRP chunks provide 

navigation instructions within rooms. 

The translation is a traversal process along the leaves of 

the parse tree. For the example shown in Figure 1, we 

convert the parse tree to a robot behavior model by 3 steps. 

1. Preorder traverse the parse tree. List the phrases of the 

corresponding chunks sequentially. The phrases are: (1) 

OBTP��³the fork is in´����� ORMT3��³the living room´��

(3) ORMRP��³on the right´���4) FURTP: ³on the table´��

����,5053��³to the right side´��(6��)8553��³behind the 

couch´� 

2. Extract room information and target object information 

from ORMTP, ORMRP and OBTP using the dictionary. 

The room is living room and the target object is the fork. 

3. Generate navigation instructions by building the RDT 

QRGHV�� 7KH� UHVXOW� LV� ³URERW-right-WDEOH´�� ,Q� D� FRPSOH[�

command, there may be more than one phrase that can 

be translated to a RDT node. Connect them sequentially 

to build a RDT chain (Fig. 2). 

 

Figure 2. RDT Chain Model for the spatial description in Fig. 1. 

E. Robot Behavior Model 

After translating the spatial descriptions into robot 

commands, the robot behavior model can be instantiated, 

and the robot is then ready to execute the command. The 

robot behavior model has a two-tier structure. The higher 

tier is a global view of the whole task which is the 3-subtask 

model. The lower tier drives the robot actions as given by 

the RDT nodes. In the RDT model, the reference also 

provides a label that tells the robot what kind of behavior it 

should perform. The behavior can either be a basic action 

like spinning and moving forward or a complex action like 

searching or following a path. The dynamic instructions and 

static instructions have different strategies which can be 

represented by state machines. The dynamic model is not as 

dependent on perception and recognition abilities but rather 

relies on sequential movement commands. However, the 

static command strategy requires the robot to search and 

recognize the reference and target items. 

IV. EXPERIMENT 

The methods described above have been evaluated 

experimentally by executing robot spatial descriptions in a 

simulation environment and comparing the results to human 

performance using the same descriptions. The human 

performance provides some context in interpreting the robot 

results. 

A. Simulation Environment and Experiment Design 

Microsoft Robotics Studio is used for the robot 

simulation experiment environment. The virtual 

environment is a two-room home with a hallway between 

rooms, as shown in Fig. 3. The robot starts at the back of the 

hallway. The robot used in this experiment is a differential 

drive Pioneer 3DX mobile robot with a Kinect mounted at a 

height of 1m. For the physical robot, RGB and depth images 

are used to recognize the furniture and small objects inside 

the room [14]. For the simulation experiment, the robot uses 

the Kinect viewing cone and distance to determine when 

perception is likely to succeed. That is, if a furniture item or 

small object is in the viewing cone and at a close enough 

distance, the robot assumes that perception is successful. 

This method is used to approximate WKH�URERW¶V�SHUIRUPDQFH�

in a physical setting, which will be tested in future work. It 

also serves to test the spatial language methods independent 

of the perceptual challenges. 
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 There are 6 scenarios in the experiment. Each has a 

unique target object, which are fork, glasses case, laptop, 

monitor, statue, and mug. In each scenario, the furniture 

positions are fixed while the object placement is different. 

Fig. 3 shows the furniture and object locations in the scene. 

There are 149 template spatial language descriptions for the 

6 robot fetch scenarios. The descriptions are converted to 

tree structures and translated to robot commands as 

described above. In this experiment, the descriptions have 

been manually chunked so that they are reliable as ground 

truth for future NLP work. 

An experiment was also conducted with human subjects; 

48 undergraduates were asked to navigate through the same 

virtual environment using a mouse and keyboard interface to 

arrive at a target specified in a spatial description. This was 

designed to test the effectiveness of the descriptions for 

finding the specified target. Several cases were intentionally 

designed to include an ambiguous phrase, in an effort to 

observe how the human subjects would handle such 

VLWXDWLRQV�� )RU� H[DPSOH�� WKH� UHJLRQ� ³in front of the couch´�

might refer to the seating side of the couch if the FRXFK¶V�

intrinsic frame is used, or it might refer to the opposite side 

depending on the robot position and a different reference 

frame being used.  Each participant performed 12 trials, each 

with a template description; 576 trials were tested in total 

which were taken from the 149 unique spatial descriptions. 

Target objects were specified in the spatial descriptions, and 

subjects navigated until they reached the target location.  

For the robot, the same 149 descriptions were used; 

however, the target object was not included in the 

descriptions to test how well the robot could determine the 

target based on the description structure and content. Each 

robot trial ended when the robot arrived at the position of the 

target furniture (as determined tKURXJK�WKH�URERW¶V�UHDVRQLQJ�

processes) and turned its viewing cone on the target furniture 

item, i.e., the furniture that held the small target object.  

 

Figure 3. Simulation Experiment Environment 

B. Results 

We recorded robot state in each frame for each trial and 

took snapshots RI�WKH�URERW¶V�VHQVRU at the end of the trials. 

To analyze the results of the robot experiment, we tested 

several metrics. Here, we present results for path length, 

percent spin time, percent stop time, and success rate. Path 

metrics are generated from the robot state record and 

compared to the human performance using the same metrics. 

The success rate is analyzed for the robot only, as all paths 

in the human subject data ended with the specified target 

object. To determine whether the trial was successful, we 

checked whether the target object was in view in the sensor 

snapshot taken at the end of the trial.  

Tables III through VII show the results of the experiment 

based on an items analysis using the 149 unique template 

descriptions. Mean values and standard deviations are 

included for each path metric. To better compare robot and 

human path metrics, we include only robot trials that were 

successful in determining the correct target. There are 123 

successful robot trials out of the total 149 unique 

descriptions tested. The robot success rates are then analyzed 

for the how/where and different landmark test conditions. 

The overall success rate for the robot was 85%. 

TABLE III. PATH LENGTH FOR HUMAN VS. ROBOT (METERS) 

 Landmark Mean SD 

Human 

Goal 9.71 1.95 

None 9.82 2.26 

Path 9.22 2.08 

Total 9.54 2.10 

Robot 

Goal 8.66 2.30 

None 8.89 2.39 

Path 7.58 2.03 

Total 8.28 2.28 

TABLE IV. PATH LENGTH FOR HOW VS. WHERE (METERS) 

 Mean SD 

How 9.30 0.21 

Where 8.42 0.28 

TABLE V. PERCENT SPIN TIME FOR HUMAN VS. ROBOT (%) 

 Landmark Mean SD 

Human 

Goal 17.82 6.78 

None 17.97 4.03 

Path 18.12 6.79 

Total 17.98 6.08 

Robot 

Goal 6.68 7.70 

None 6.20 7.54 

Path 28.24 25.69 

Total 15.31 20.36 

TABLE VI. PERCENT STOP TIME FOR HUMAN VS. ROBOT (%) 

 Type Mean SD 

Human 
How 10.25 4.95 

Where 7.43 4.41 

Robot 
How 0.22 0.42 

Where 1.15 7.14 

TABLE VII. SUCCESSFUL RATE RESULT (%) 

Types and 

Landmarks 

How vs. Where Goal vs. Path vs. None 

How Where Goal Path None 

Successful 

Rate 
89.4 73.4 89.5 40.0 98.0 

V. DISCUSSION 

Several observations can be made from the experimental 

results. From the path length metric, we find that the robot 

has a shorter path than the human subjects in all command 

types and all landmark types. We also observe that the 
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³:KHUH´�W\SH�FRPPDQG�results in a shorter path length than 

the ³+RZ´�W\SH�FRPPDQG across all robot and human trials.  

Considering percent spin time, the robot takes less spin 

time in the Goal and None landmark cases than the humans 

but considerably more spin time than humans in the Path 

landmark cases. This demonstrates that giving the robot 

more information may not necessarily help.  

The percent stop time results show that the robot spends 

much less stop time compared to the human trials in all 

command types and landmark cases, perhaps because the 

robot is not using perception here. 

Looking at the success rate results for the robot, we 

observe that ³+RZ´� W\SH� FRPPDQGV�have a higher success 

rate than ³:KHUH´� W\SH� FRPPDQGV�� Also, the commands 

ZLWK� ³3DWK´� LQIRUPDWLRQ� VKRZ� D� much lower success rate 

when compared to other landmark cases. Several of the 

³3DWK´� ODQGPDUN�FDVHV� intentionally included an ambiguous 

phrase, such as ³in front of the couch´�when the seating side 

was on the opposite side from the robot. In many of these 

ambiguous cases, the robot assumed an intrinsic reference 

frame by default, and got it wrong, because it was 

constrained from using any perceptual abilities to confirm 

the location as a person would. In spite of these ambiguities, 

the overall success rate was 85%, which indicates that 

performance is likely to improve if additional perceptual and 

reasoning capabilities are included. 

We will continue to work on improving the system to 

robustly handle both static and dynamic commands. Future 

plans include a modified experiment in which the human 

will not be given the target object; this will provide a better 

comparison with the robot runs. Moreover, we will test the 

system on a larger set of spatial descriptions, using the actual 

descriptions logged in human subject experiments rather 

than the template descriptions. We are working on NLP 

methods to automate the chunking process. Our ultimate 

goal is to evaluate the robot in the physical environment and 

test the perceptual capabilities along with the spatial 

language methods. 

ACKNOWLEDGEMENT 

This work was supported in part by the U.S. National 

Science Foundation under grant IIS-1017097. 

REFERENCE 

[1] J. Beer, C. A. Smarr, T. L. Chen., A. Prakash, T. L. Mitzner, C. C. 

Kemp, and W. A. Rogers, ³7KH� 'RPHVWLFDWHG� 5RERW�� 'HVLJQ�

*XLGHOLQHV� IRU� $VVLVWLQJ� 2OGHU� $GXOWV� WR� $JH� LQ� 3ODFH�´ in Proc., 

ACM/IEEE Intl. Conf. on Human Robot Interaction, Boston, MA, 

2012, pp. 335-342. 

[2] M, Scopelliti, V. Giuliani, and F. Fornara, ³5RERWV� LQ� D� 'RPHVWLF�
6HWWLQJ�� $� 3V\FKRORJLFDO� $SSURDFK�´� Universal Access in the 

Information Society, vol. 4, pp. 146-155, 2005. 

[3] W. Gribble, R. Browning, M. Hewett, E. Remolina, and B. Kuipers, 

³,QWHJUDWLQJ�9LVLRQ�DQG�6SDWLDO�5HDVRQLQJ�IRU�$VVLVWLYH�1DYLJDWLRQ´��

in Assistive Technology and Artificial Intelligence. Lecture Notes in 

Computer Science, V. Mittal, H. Yanco, J. Aronis and R. Simpson 

(Eds.), Springer-Verlag, Berlin, pp. 179-193, 1999. 

[4] B. .XLSHUV��³$�+LHUDUFK\�RI�4XDOLWDWLYH�5HSUHVHQWDWLRQV�IRU�6SDFH�´�

in Spatial Cognition. Lecture Notes in Artificial Intelligence 1404, C. 

Freksa, C. Habel, and K. Wender (Ed.), Berlin: Springer-Verlag, pp. 

337-350, 1998. 

[5] T. Kollar, S. Tellex, D. Roy, and N. 5R\�� ³7RZDUG� 8QGHUVWDQGLQJ�

1DWXUDO� /DQJXDJH�'LUHFWLRQV�´ in Proc., 5th ACM/IEEE Intl. Conf. 

on Human-Robot Interaction, 2010, pp. 259. 

[6] M. MacMahon, B. Stankiewicz, and B. .XLSHUV�� ³:DON� Whe Talk: 

&RQQHFWLQJ�/DQJXDJH��.QRZOHGJH��DQG�$FWLRQ�´�Route Instructions, 

pp 1475-1482, 2006. 

[7] A. Vogel and D. -XUDIVN\�� ³/HDUQLQJ� WR� )ROORZ� 1DYLJDWLRQDO�

'LUHFWLRQV�´ in Proc., 48th Annual Meeting of the Association for 

Computational Linguistics, 2010, pp. 806-814. 

[8] Y. Hato, S. Satake, T. Kanda, M. Imai, and N. Hagita, "Pointing to 

space: modeling of deictic interaction referring to regions," in Proc. 

of the 5th ACM/IEEE Intl.Conf. on Human-Robot Interaction, 2010, 

pp. 301-308. 

[9] S. Tellex, T. Kollar, S. Dickerson, M. Walter, A. Banerjee, S. Teller 

and N. 5R\�� ³8QGHUVWDQGLQJ� 1DWXUDO� /DQJXDJH� &RPPDQGV� IRU�
5RERWLF� 1DYLJDWLRQ� DQG� 0RELOH� 0DQLSXODWLRQ�´� Proc., Conf. on 

Artificial Intelligence (AAAI), 2011. 

[10] S. Tellex, T. Kollar, S. Dickerson, M. R. Walter, A. G. Banerjee, S. 

Teller, and 1��5R\�� ³Approaching the Symbol Grounding Problem 

with Probabilistic Graphical Models´� AI Magazine. vol. 32, no. 4, 

pp. 64-76, 2011.  

[11] T. Kollar, S. Tellex, D. Roy, and N. Roy, ³Toward Understanding 

Natural Language Directions´. In Proc�� $&0�,(((� ,QW¶O� &RQI�� RQ�

Human-Robot Interaction, 2010, pp. 259±266. 

[12] Matuszek, Cynthia, Evan Herbst, Luke Zettlemoyer, and Dieter Fox, 

³Learning to parse natural language commands to a robot control 

V\VWHP�´ In 3URF�� RI� WKH� ��WK� ,QW¶O� 6\PSRVLXP� RQ� ([SHUimental 

Robotics, 2012. 

[13] M. Skubic, Z. Huo, L. Carlson, X. Li, -�� 0LOOHU�� ³Human-Driven 

Spatial Language for Human-Robot Interaction.´ Workshops at the 

Twenty-Fifth AAAI Conference on Artificial Intelligence. 2011. 

[14] M. Skubic, T. Alexenko, Z. Huo, L. Carlson, J. Miller, ³Investigating 

Spatial Language for Robot Fetch Commands.´ Workshops at the 

Twenty-Sixth AAAI Conference on Artificial Intelligence. 2012. 

[15] M. Skubic, L. Carlson; X. Li, -��0LOOHU�� =�� +XR�� ³Spatial language 

experiments for a robot fetch task.´ in Proc., ACM/IEEE Intl. Conf. 

on Human-Robot Interaction, Boston, MA, 2012. 

[16] L. A. Carlson, M. Skubic, J. Miller, Z. Huo, and T. Alexenko. 

³Strategies for human-driven robot comprehension of spatial 

descriptions by older adults in a robot fetch task´. Topics in 

Cognitive Science, in press. 

[17] Radvansky, A. Gabriel, Sabine A. Krawietz, and Andrea K. Tamplin. 

³Walking through doorways causes forgetting: Further 

H[SORUDWLRQV´, The Quarterly Journal of Experimental Psychology 

vol. 64, no. 8, 2011, pp. 1632-1645.  

[18] Radvansky, $�� *DEULHO�� DQG� 'DYLG� (�� &RSHODQG�� ³Walking through 

doorways causes forgetting: Situation models and experienced 

VSDFH´� Memory & cognition, vol. 34, no.5, 2006, pp. 1150-1156. 

[19] Arkin, C. Ronald, ³Behavior-based robotics´, MIT press, 1998. 

[20] /��$��&DUOVRQ��DQG�3��/��+LOO��³Formulating spatial descriptions across 

YDULRXV�GLDORJXH�FRQWH[WV�´ Spatial Language and Dialogue, vol. 1, 

no.9, 2009, pp. 89-104. 

[21] M. Skubic, D. Perzanowski, S. Blisard, A. Schultz, W. Adams, 

Magda Bugajska, and D. Brock��³Spatial language for human-robot 

GLDORJV´� IEEE Transactions on Systems, Man, and Cybernetics, Part 

C: Applications and Reviews, vol. 34, no.2, 2004, pp. 154-167. 

[22] Matsakis, Pascal, and L. :HQGOLQJ�� ³A new way to represent the 

relative position between areal objects.´ IEEE Transactions on 

Pattern Analysis and Machine Intelligence, vol. 21, no.7, 1999, pp. 

634-643. 

978-1-4799-0509-6/13/$31.00 ©2013 IEEE 702


