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Abstract

When monitoring elders daily routines, it is desirable to de-
tect aberrant activity trends, as they may foreshadow a need
for medical attention. But, traditional, unsupervised pattern
classification techniques are ill-suited for this task, because
the data distributions formed by the captured patterns are tem-
poral in nature. To overcome this algorithmic deficit, we craft
a framework for analyzing and displaying additive trends in
feature data extracted from passive sensors.

Introduction

By 2030, the elderly population is expected to double. With-
out a firm, existing caregiving framework to accommodate
the influx of individuals, faculty and researchers at the Uni-
versity of Missouri Sinclair School of Nursing have adopted
an Aging in Place (AIP) style of care (Marek, Rantz and
Porter 2004). As an alternative to institutionalized, long-
term oversight, AIP revolves around the notion of indepen-
dent, at home living and the ability for elders to continuously
receive support for their growing gamut of needs. But, the
model alone is not sufficient to combat the growing financial
burden for caregiving services (Knickman and Snell 2002)
along with staving off a degenerate functional decline. In-
stead, automated, intelligent systems could be coupled with
the approach to reduce costs and improve the quality of life.

To help promote this technologically enhanced, indepen-
dent lving model, the MU Sinclair School of Nursing and
Americare Systems Inc. have collaborated to create the
TigerPlace domicile complex (Rantz et al. 2005). As one of
four state-approved AIP projects, TigerPlace has spawned a
number of ongoing research ventures focused on improving
and personalizing elder care through environment monitor-
ing (Anderson et al. 2007; Luke et af. 2007; Sledge, Keller
and Alexander 2008; Wang and Skubic 2008). Out of these
endeavors, one facet of the work is focused on crafting a hy-
. brid software-sensor system capable of providing caregivers
additional information about the elders’ wellbeing.

While placing a variety of sensors in an individuals
dwelling yields a wealth of activity information, a major is-
sue is rooted in how to analyze the data to locate trends that
correspond to states of wellbeing. However, before embark-
ing on data analysis, an important first step is the extraction
of features that elucidate important information embedded
within the data, Unlike the raw sensor signals, a matrix of
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computed features, X = {Z1,...,Z,} C R®, may contain
an arbitrary number of data dense regions that correspond to
distinct diurnal patterns. By utilizing exploratory data analy-
sis techniques (Bezdek er al. 1999), X can be organized into
¢ self-similar subsets, called clusters, based upon an under-
lying similarity measure. But, since the activity of the mon-
itored individuals, and thus the collected sensor data, can
vary on a daily basis, many of these methods are insufficient
for unsupervised temporal classification. To ameliorate the
data exploration process, we draw upon recent work, grow-
ing neural gas clustering (GNGC), from the realm of tempo-
ral clustering (Sledge and Keller 2008). In the subsequent
sections, we not only show that the technique can locate
emergent activity trends in the computed sensor data fea-
tures, but also provide a mechanism for viewing the learned
groups in R*.

Feature Extraction

As amethod to gain insight into any type of data, feature cal-
culation depends heavily on the quality and type of recorded
signals, To ensure that a broad spectrum of activities is pre-
served for unearthing this information, various apartments at
TigerPlace are outfitted with.a suite of sensor elements de-
veloped by collaborators at the University of Virginia (Mack
et al. 2006; Alwan er al. 2003). In each of the deployed net-
works, infrared motion sensors record both quantized activ-
ity information and room location. Pneumatic strips, placed
under the bed linens, are also used to gather a variety of
bed-related data, such as restlessness, pulse and respiration.
However, unlike the binary motion sensors, the bed sensor
returns level-thresholded, physiological data. For example,
if the resident is readjusting, the sensor will initially report
low restlessness. Provided that the device continues to detect
movement, and that a sufficient amount of time has elapsed,
medium, high or very high firings are generated. As well,
respiration and pulse related data are captured, at regular
intervals; but, instead of escalating firing levels, rough es-
timates of the breaths and heart beats per minute are logged.
Though some minutiae are lost in the coarse quantization
process, and others due to communication errors, a bulk of
the essential information often remains intact or can be.in-
ferred from other sensors.

Since new sensor data are constantly collected, for each
participant, feature computation begins with the segmenta-









algorithm for finding a minimal spanning tree (MST). After
the sorting process, if the matrix is displayed as an intensity
image then cluster structure is indicated by the presence of
dark blocks along the main diagonal.

By modifying the VAT approach, to instead use informa-
tion obtained from GNGC, we can create images like those
in Figs. 2(b) and 2(c}. These plots, which we call neuronal
dissimilarity images (NerD>I), are generated by first comput-
ing the normalized, pair-wise dissimilarity of the neurons in
each isolated graph. Utilizing Prim’s modified MST process,
the dissimnilarities are rearranged, for each G, which aids
in looking for dense, intra-cluster distributions of neurons,
Each of these sub-matrices are then colored and placed along
the main diagonal of the NerID1, Inter-cluster spatial relation-
ships are also incorporated in the image by finding the min-
imal distance between the neurons in each G; these values
are then normalized so that while denotes the largest dis-
tance between two clusters, in R®. Finally, volume or clus-
terness (Keller and Sledge 2007) information can be added,
as a third dimension, to provide additional insight about the
approximated manifolds.

Temporal Activity Analysis

With the ability to iteratively add new neuronal reference
vectors, and an incremental style of learning, GNGC is par-
ticularly attractive for temporal analysis. As such, we tested
its effectiveness in locating both pradually changing and
sud-den, fluctuating activity changes through a series of case
studies using data collected by the TigerPlace sensor net-
work system. To aid in annotating the exposed trends, we
made use of medical records and assessments of the partic-
ipants” wellbeing coltected by registered nurses and social
workers during clinical interviews.

Case Study - Participant I

Over the course of multiple iterations, the current feature
set, outlined in the second section, has evolved from a much
earlier subset of characteristics. For each generation of at-
tributes, the quality benchmark has been both the recogni-
tion of trends in stored data along with any future patterns
that may arise. To help probe for these tendencies, activ-
ity density plots and physiological graphs, such as those in
Fig. 3(a)-(d), are used. Viewing the first two plots in Fig. 3,
anumber of conspicuous patterns emerge: 1) a large, abnor-
mal spike in bed restlessness, which occurred after an ER
visit, 2} a slightly decreasing, multimodal distribution after
the spike, 3) and an overall decrease in motion firings over
time, possibly from the elder spending more time out of the
apartment. Though there is some correlation between the
large restessness peak and the pulse and respiration data in
Fig. 3{c)-(d), these two plots did not play a major role in this
example.

At the conception of the feature extraction process, it was
uncertain what type of activity clusters would egress from
the physiological data. By conducting a series of studies
{Sledge, Keller and Alexander 2008), we found that the cur-
rent features, listed in Table 1, highlighted several activity
trends that were not present in previous sets., To visualize the
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Figure 4: Plots of the first three principle components
from the feature data for Participant I from 10/10/2005 to
01/29/2007, For both plots, each of the points corresponds
to a single 24-hour period. In (b), the current features, X,
are those listed in Table 1. To see image details, please zoom
in,

differences, principle component analysis (PCA) was used,
which produced the projection plots shown in Fig. 4. View-
ing the first image, Fig. 4(a), we discovered that many of the
daity attributes clumped together in a single region. With
only a scarce number of outliers, denoting days during the
large restlessness peak, it was apparent that these original
features were insufficient in emphasizing all of the visually
perceptible trends from Fig. 3(a)-(b). But, upon projecting
the current feature set, X, into R3, we found that a num-
ber of data dense regions formed. One of these clusters, the
elongated blue cluster, shown in Fig. 4(b), formed in the be-
ginning and was indicative of the elder’s “normal” baseline.
A second cluster, the wispy strand of red points, denoted
heavily abnormal behavior, which was a culmination of both
the large restlessness spike and the period of bed inactivity,
yet motion activity, that ensuingly occurred. Similarly, a
third activity cluster, highlighted in green, captured the de-
crease in motion firings from Fig. 3(a). This new cluster
became the dominant baseline, for a time, until near the end
of the recorded data. At this point, the amber distribution
arose, which coincided with hospice caregivers entering and
leaving the apartment.

Given the vast improvement for locating a variety of ac-
tivity trends, we first fed the additive, PCA-reduced features,
X. ¢ R | R% aday at a time, to the GNGC algo-
rithm, Over multiple iterations, as exhibited in Fig. 5(a)-(d),
GNGC updated the spatial location of the reference vectors
and found that 3 clusters, shown in Fig. 5(d), emerged. Un-
fortunately, the amber distribution, in Fig. 4(b), eluded de-
tection due to the small number of data points and its sparse
nature.

Though these results are consistent with our expectations,
given that information is lost in the reduction process, they
do not highlight the true abilities of temporal clustering. To
fully measure the algorithms capabilities, the non-projected
data, X, C R*, was iteratively introduced to GNGC. Once
the algorithm stabilized, for each batch of new features, a
series of NerDI plots, in Fig, 6(a)-(d), were generated. Com-
paring these cluostering results with those in Fig. 5, it 1s ev-
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Figure 14; Temporal plots of the GNGC clustering results, for Participant III, with 75, 150, 225, and 300 neurcnal references,

respectively. To see image details, please zoom in.
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