Speedup of Fuzzy Logic through Stream Processing on Graphics
Processing Units

Nicholas Harvey, Robert Luke, James M. Keller, Derek Anderson

Abstract—As the size and operator complexity of a fuzzy
logic system increases, computational tractability becomes a
problem. There is a significant amount of parallelism in both
the creation of the fuzzy rule base and in fuzzy inference.
Traditional processors (CPUs) cannot take full advantage of
this natural parallelism. Graphics Processing Units (GPUs)
speed up rule construction and inference by utilizing up to 128
processing units operating in parallel. Normally, these
processors are used to perform high speed graphics
calculations for video games, movies, and other areas of intense
graphical work. In this paper, a method is discussed for
speeding up fuzzy logic by structuring it into a format such that
it resembles the standard rendering procedure for a graphics
pipeline based on rasterization.

I. INTRODUCTION

he doubling in processing power of CPUs has
approximately followed Moore’s observation, every 18
months, while GPUs are doubling around every 6
months [11]. Much of this progress is due to the highly
parallel nature of graphics applications. GPUs are stream
processing devices. Objects on a GPU (referred to as
fragments) are processed in parallel by the same program,
known as a shader. The number of FLOPS (floating point
operations per second) on a stream processing device can be
increased, to some extent, by simply adding more
processors. GPUs are also optimized for floating point
calculations. All of this is a recipe for improved
computational performance on problems that can be
translated into the stream processing model, such as the
translation process and inference procedures of fuzzy logic.
Algorithms based on the independent processing of the
elements of vectors and matrices tend to benefit significantly
from GPU implementations, as do many other general
problems that depend heavily on floating point operations
[4]. There is arapidly growing body of research that focuses
on the utilization of GPUs to perform general purpose
computation. Some examples include Fuzzy C-Means
clustering [1, 2], ray tracing calculations [5], linear algebra
[6], and fast Fourier transforms [7]. Because fuzzy logic can
be implemented using vector and matrix calculations, it is a
prime candidate for GPU optimization.

Manuscript received December 21, 2007. This work was supported in
part by the University of Missouri-Columbia College of Engineering.

N. Harvey is with the University of Missouri-Columbia, Columbia, MO
65211 USA (phone: 314-307-4157; e-mail: rhl3db@mizzou.edu,
kellerj@missouri.edu, dtaxtd@mizzou.edu)

R. H. Luke, J. M. Keller, D. Anderson are with the University of
Missouri-Columbia, Columbia, MO 65211 USA (e-mails:
rhI3db@mizzou.edu, kellerj@missouri.edu, dtaxtd@mizzou.edu)

978-1-4244-1823-7/08/$25.00€)2008 IEEE

Several fast (real-time) fuzzy logic solutions exist [12,
13]. However, they are typically extremely specialized and
designed for control problems. A GPU offers flexibility, as
it is more easily integrated with a PC, and speed.

Most applications of real-time fuzzy rule-based systems
utilize singleton fuzzification with correlation-min rule
encoding [16]. These choices facilitate a simple and
efficient implementation. Alternate rule encoding and full
inference using Generalized Modus Ponens considerably
more costly, but increases the utility of fuzzy systems for
decision making purposes. It is this scenario that we address
here.

In section 2 we briefly review fuzzy logic. Section 3
contains an overview of GPU programming. Section 4
covers the basics of performing fuzzy logic calculations on
the GPU. Sections 5 through 8 describe the packing scheme
used for the fuzzy logic system. Section 9 contains technical
details of the implementation, and section 10 describes our
experiments and contains the results. In section 11, potential
future work is discussed.

II. Fuzzy LoGIC

Fuzzy Logic, put forth by Lotfi Zadeh, is an extension of
traditional Boolean logic [9]. This theory is based on fuzzy
sets [8], which allow for intermediate truth values, between
true and false. Fuzzy Logic is often used in control and
decision systems. Truth values are usually determined by
using a fuzzy membership function, denoted as pa(x)€[0, 1],
where A is some fuzzy set. Any function that maps onto [0,
1] may be selected as the membership function. Often a
discrete membership function is designed, when the inputs
are known to be discrete. This type of membership function
is simply represented as a vector. Rules in a fuzzy logic
system are of the form IF-THEN, where the IF part specifies
the antecedents and the THEN part specifies the
consequents. Rules are constructed from linguistic
variables. These variables take on the fuzzy values or fuzzy
terms that are represented as words and modeled by fuzzy
subsets of some appropriate domain. An example linguistic
variable is temperature, and it can be defined using the terms
such as hot, warm, and cool.

First, rule matrices are constructed using implication
operators. The implication operator is applied to the
antecedent and consequent membership function vectors,
resulting in the rule matrix: pa(X)—ps(y)=ur(x, y). The
compositional rule of inference can then be applied [16],
using the rule matrix and an input membership function
vector. Inputs to the inference process which are similar to

3809

Authorized licensed use limited to: University of Missouri. Downloaded on January 13, 2009 at 16:43 from IEEE Xplore. Restrictions apply.

the antecedent will produce corresponding outputs similar to
the consequent.

III. GRAPHICS PROCESSOR UNITS

GPUs originally arose from the desire for more powerful
computer graphics processing abilities. Prior to the advent
of GPUs, graphics processing took place on the CPU; CPUs
were primarily designed to execute instructions and perform
calculations using integers, not to perform the amount of
floating point and vector-matrix operations necessary for
most graphical applications. As a result, real-time graphics
rendering engines, such as those used by most video games,
had severe limitations on the quality of the scenes, and it
took a very long time to produce the special effects used in
many movies.

In order to improve the speed and quality of graphics,
specialized peripheral hardware was created. It was
designed solely to perform the mathematical operations used
in the rendering of computer graphics based on the theory of
rasterization. Rasterization is simply the projection of a
scene in a continuous, three dimensional space, onto a
discrete, two dimensional display. The vertices in 3-space
are grouped into polygons (normally triangles), which are
then projected onto the 2-space of the display, and filled as
appropriate. Because the hardware could be optimized for
this relatively narrow set of tasks, it could perform the tasks
much faster than the CPU. As GPUs became more common,
the need became apparent for a standardized, platform
independent, high level language. GLSL is the OpenGL
shading language, designed to integrate with OpenGL.
HLSL is Microsoft’s high level shading language, and works
with DirectX graphics libraries. Cg is a C like language for
GPU shader programs, designed by NVIDIA, which works
with both DirectX and OpenGL.

As mentioned above, modern GPUs are stream
processors. When presented with a collection of input data,
such as pixels in an image, stream processor computes a
function on the entire collection, much like a kernel
operation, where each stream element is assumed to be
independent of all others. GPUs typically process data in
two stages. The first step is vertex processing. The vertex
processors are responsible for transforming the vertices that
make up the geometric objects, or simply passing the vertex
positions on to the next step: primitive assembly. In this
stage the polygonal primitives are constructed from the
respective vertex positions. This shape is then rasterized
into fragments. Finally, fragment processing is performed,
in which the color information of each fragment can be
modified by a fragment program, before the scene is
displayed.

3810

A

o o

Vertex Primitive Rasterization: Fragment
Processing: Assembly: Breaks down Processing:
Vertex program Construction of the object into Processing of
can transform geometric fragments fragments,
vertex positions objects from potentially

vertex positions altering colors

Fig. 1. Rending stages in the graphics pipeline

Only fragment and vertex processors are currently
programmable on the majority of commercially available
GPUs. The Shader model 4 was recently released, and a
new processing stage, geometry processing, has been added.
(This stage allows for operations on a primitive after vertex
processing and before the object is rasterized.) Because
there are almost invariably more fragments in a scene than
vertices, virtually all GPUs contain more fragment
processors than vertex processors. Since fragment
processors have been designed and optimized for per-pixel
operations on textures, they are ideal for matrix calculations.
Therefore, most GPGPU (General Purpose GPU) programs
rely primarily on the fragment processesors and programs in
order to perform their calculations.

The rendering process, which takes place on the GPU, is
controlled by commands issued from a CPU program. This
controlling program must manage the settings of the GPU,
load all data, pass the data to and from the GPU, and control
the execution of the GPU programs.

The CPU control program uses several libraries to control
the GPU. OpenGL is used to control higher-level aspects of
the rendering environment. NVIDIA’s Cg and CgGL
libraries are used to gain access to the GPU and develop
GPU programs. Cg controls the profile used during GPU
program execution, which determines which features can be
used by the GPU program. Different profiles can limit the
total number of instructions and arithmetic operations per
GPU program, and affect the functionality of conditionals,
looping, various data types, array indexing, and Cg standard
library functions. These libraries also control the creation,
loading, and binding of the GPU programs. These libraries,
and their relationships, are expressed in Figure 2.

[Control Program
CPU [OpenGL I Cg Library I

CgGL Library]

GPU Program |Texture|
GPU { ’ Execution _[Buffers,

Fig. 2. Interaction between CPU and GPU libraries.

Rendering
Environment]

GPU Program
Buffers

IV. Fuzzy LoGic ON THE GPU

GPGPU programming is a very powerful method for
quickly performing complex calculations on streams of
relatively independent elements. This processing philosophy
takes advantage of the fact that textures stored in GPU

2008 IEEE Congress on Evolutionary Computation (CEC 2008)

Authorized licensed use limited to: University of Missouri. Downloaded on January 13, 2009 at 16:43 from IEEE Xplore. Restrictions apply.

memory are simply matrices, typically populated with color
information. This means that the GPU can be used to
perform calculations which are not graphical in nature, as
long as the format of the information is similar to that of a
standard graphics application. When the elements of the
matrices can be processed independent of the results of their
neighbors, speedup can usually be gained from a GPGPU
implementation.

Fuzzy membership functions and fuzzy rules are stored as
matrices in texture memory, and GPU fragment programs
are used to perform operations on these matrices. A
continuous membership function must be discretized prior to
storage. The size of the consequent membership functions
and fuzzy outputs is essentially arbitrary, though they must
be within the bounds set by the specific GPU hardware. The
NVIDIA 8800 can operate on textures of size 8192x8192,
while most other adapters, NVIDIA and ATI, are limited to
textures of size 4096x4096. The size of the antecedent and
input membership functions must be a power of two, in
order to achieve the best performance. When using
antecedent and input membership functions with sizes other
than powers of two, a significant amount of processing time
is wasted. This constraint exists because of a final reduction
step. Section 5 outlines rule construction for single rules,
with a single antecedent and a single consequent, section 6
shows how to perform inference from Generalized Modus
Ponens, section 7 describes the extension to multiple
antecedents and multiple inputs, and section 8 shows how to
use multiple rules, as in a rule database. All of these
configurations were tested on sample data, to ensure that all
calculations were being correctly performed by the GPU
programs.

V. RULE CONSTRUCTION

Data is transferred between the CPU and GPU using the
PCI data bus. In many situations, this can be the most
significant performance bottleneck. As a result, it is best to
minimize the amount of data transferred between the CPU
and GPU, hence only communicating when necessary, such
as when the application starts and finishes. Because of this,
it is more efficient to store the fuzzy rule set as groups of
antecedent and consequent membership functions, instead of
the complete rules. Limited memory on the GPU makes the
storage of large numbers of pre-calculated rule matrices
impracticable, and the amount of time necessary to calculate
each rule on the fly is negligible compared to the amount of
time that would be needed to copy the rules back and forth
between the CPU memory and GPU texture memory each
time. In order to select a rule for use in inference, one
simply selects antecedent and consequent membership
functions, and the rule is calculated. The choice of
implication operation is relatively arbitrary; in this case the
Lukasiewicz implication, pr(X, y) = IA(1 - pa(x) + ps(y)), is
used.

For a rule with a single antecedent and single consequent,
the packing scheme is shown in Figure 3.

2008 IEEE Congress on Evolutionary Computation (CEC 2008)

Antecedents: Consequents:
Hai(x1) pai(xx) ue1(y1) Ue1(ym)
par(X1) Bax(xx) ue2(y1) g2 (yam)
Has(x1) Has(xn) pai(y1) ui(ynm)

Rule:

Ha2(x1)— Hp2(ym)
Ha2(X2)— Hp2(ym)

Ha2(x1)— pp2(y1)
Ha2(x2)— pp2(y1)

Ba2(xx)— Me2(y1) Ba(Xn)— pea(ym)
Fig. 3. The construction of a single antecedent rule from the antecedent
and consequent fuzzy membership functions

Antecedents are packed into a single texture. This texture
is JxN, where J is the number of antecedents, and N is the
dimensionality of the fuzzy sets. The consequent texture has
the same general format as the antecedent matrix, but it is
IxM, where I is the number of consequents and M is the
fuzzy set size. The rule matrix is built on the fly using the
GPU for a selected antecedent-consequent pair, and it is
NxM in size. We discuss later how to pack multiple
antecedents into a matrix.

VI. INFERENCE

Once a rule is constructed, inference is performed, and
then another rule is created and the process can be repeated.
(In section 8 we show how to store and use multiple rules
simultaneously.) Inputs are packed into a single texture
that is CxN in size (where C is the number of inputs), and
has the same format as the antecedent texture. The
compositional rule of inference is performed using the new
inputs and the currently loaded rule. The result is a set of
new outputs, which has the same texture format as the
consequent texture, and is of size CxM. Figure 4 shows this
specific format.

Rule:

Ha2(X1)— Hp2(ym)
Ha2(X2)— Hp2(ym)

Ha2(x1)— pp2(y1)
Ha2(x2)— pp2(y1)

H/\Z(XN); pe2(y1) U-AZ(XN);; pe2(ym)

Input: Output:
pat(X1) pat(Xn) He1(y1) pe1(ym)
taa(X1) pan(x) pea(y1) te2(ym)
HA'(:(.XI) HA‘g(.XN) HB’;('YI) U-B'(;'('YM)

Fig. 4. Performing Fuzzy inference with a single antecedent rule

The first step in GPU inference is to copy the transpose of
the input vector into each column of a matrix the same size
as the rule matrix. The element-wise minimum of these two
matrices is calculated. This is shown in Figure 5.

Inputs: Rule:

Haz(Xi) ... paa(Xi) Haz(X1)— Mp2(y1) Ha2(X1)— pp2(ym)
Paa(X2) .. pan(x2) pao(X2)— ppa(yr) Hax(X2)— pp2(ym)

HAZ(X.\!);; pe2(y1) HAZ(XN); pB2(ym)
Outputs:
pa2(XDARA XD BAY1)) - pa2(XDA(RA(XD)— 1B2(YM))

Ha2(X)A(pa2(x2) = pp2(y1) - pa2(X2) A(pa2(x2)— pe2(ym))

HA';(XN) HA‘;(-XN)

HA’Z(XN)/\(HAZI("“N)—’ He2(yn) - HA’z(XN)/\(HAz&N)—’ He2(ym)

Fig. 5. Element-wise minimum of input and rule matrices

3811

Authorized licensed use limited to: University of Missouri. Downloaded on January 13, 2009 at 16:43 from IEEE Xplore. Restrictions apply.

Reduction is then applied to shrink the output texture
down to a single row. Reduction is a technique commonly
used for GPGPU programs; since all information is kept on
the GPU hardware during the reduction process, the transfer
of data between CPU and GPU is minimized. Reduction
simply applies some function, a maximum operation in the
case of fuzzy logic, to a pair of values. The resultant value
is copied into another matrix, with half the height of the
original. The process is repeated until the height is reduced
to a single row in the matrix. This vector is the final output
from the inference process.

AVB | EVF
CvD | GvH

=) [AVvBvCVD | EVFVGVvH

Fig. 6. Vertical reduction of a texture.

VII. MULTIPLE ANTECEDENTS AND INPUTS

Rules with multiple antecedents can be represented by
adding dimensions to the rule matrix; a rule matrix with one
antecedent is a rectangle (2-D), a rule matrix with two
antecedents is a cube (3-D), and a rule matrix with more
than two antecedents is a hypercube (>3-D). Alternatively,
pages can be set up within the rectangular (2-D) rule
matrices, where each page represents a layer in the
additional dimensions. ~With this technique, the same
information is stored, only in a slightly different format.
Because of difficulties with the literal representation of
matrices with greater than two dimensions on the GPU, the
latter approach is taken here. The antecedent and input
vectors are then combined using a function, usually a
minimum. The result is used for rule construction and
inference. This procedure is depicted in Figure 7.

We use a slightly different method for combining
antecedents and inputs. Rather than building an NxM
matrix (Figure 7b), the two vectors are combined into a
vector with dimensionality NxM (Figure 7c). This result is
used in the same way that the antecedent and input is used
for a single antecedent rule construction and inference.

The two input vectors are sampled on the fly, during rule
construction and inference to create this NxM vector; that is,
Rarxa2(Xi)=(pa1 (Xrin)A(Ra2(Xawny)). Each component in the
combined antecedent and input matrices are calculated by
taking their position in the single column matrix and
mapping that into positions from the original vectors, and
the appropriate value, such as the minimum, is calculated.

VIII. MULTIPLE RULE INFERENCE

Multiple rules can be packed into a single matrix in order to
have all rules executed in parallel. We first show how this
works for a single antecedent. The consequent membership
functions for each rule are concatenated into a single vector.
Any rule matrices created using this single consequent
vector formatting scheme will essentially contain a separate
rule matrix for each consequent membership function, in a
single matrix format. When the resulting rule matrix is used
for

3812

A AxA,
par(X1) . pai(Xw) pa(XDARA2(X) o par(X)ARA2(XN)
pai(x2)AmA(X1) - par(X2)ARax(Xn)

Ay
Bar(X1) . Pas(Xn)
Fig. 7a.

pat()ARAAXD) - Bar(Xn) ARA2(XN)
Fig. 7b.

A XA,
Hai(X)ARA(X1)

Rar(X1)XHAZ(Xn)
Hai(X2)Arax(X1)

()AL aa(e)

(ke Apaa(x1)

HAI(X.\)AHAZ(Xn)
Fig. 7¢
Fig. 7. Two methods for combining multiple antecedents for rule
construction and inference. We use the second format.

inference, the output vector will contain the inference of
each of the stored rules. The outputs can then easily be
separated back out of the resulting single row vector. For
consequent membership function vectors of size S, the first
consequent is located in indices 1 through S of the resulting
row vector, the second is in indices S+1 through 28, the third
is in indices 2S+1 through 3S, and so on. The inferences are
packed in the same way. This formatting scheme is shown
in Figure 8.

The same general procedure can be used to concatenate
multiple antecedent clauses together. When combined, these
two techniques allow for the construction of a large rule base
with multiple antecedents executing in parallel on the GPU.

Unfortunately, a rule is constructed for every antecedent-
consequent pair, and many of these rules may not be useful.
In order to prevent these rules from influencing the

Antecedent:
[paGx) .. pa(x) |

Consequent:
Hpi(ym) pe2a(y1) ...

(e . Bpa(yw)|
Rule:
Ha(xD)—pei(ym) BAD—HB2(Y1) o BAKD)—HB2(YM)

pa(x2)—pei(ym) Ba(X2)—Hp2(Y1) - Ha(X2)— pp2(ym)

pa(x)—pei(y1) ..
pa(x2)—psi(y1) -

HA(XN);HBI(YI) HA(XN);HBI(YM) HA(XN);Haz(YI): HA(XV);HBZ(YM)

Fig. 8. Storing multiple rules in a single matrix

inference results when fused, their outputs are masked with a
single channel matrix of 0 and Is, allowing the remaining
outputs from inference to be combined, while ignoring
superfluous data.

IX. IMPLEMENTATION

Because GPU technology varies so much between
vendors and series, and substantial advances are being made
in very short time periods, it is crucial for the programmer to
know the details of the GPU being used, to fully optimize
the GPGPU program. The choice of shader language,
texture format, rendering profile, data types, and GPU
program format, along with other factors, can significantly

2008 IEEE Congress on Evolutionary Computation (CEC 2008)

Authorized licensed use limited to: University of Missouri. Downloaded on January 13, 2009 at 16:43 from IEEE Xplore. Restrictions apply.

affect the final optimality of the GPU implementation of the
algorithm. Obviously, the model of GPU (and thus the
hardware on the GPU) used in the system will have a very
significant impact on the speed of the calculations, as will
the rest of the system hardware. It is especially important to
have the highest possible speed communication bus between
the CPU and GPU, as this tends to be one of the primary
bottlenecks for most GPU programs.

Because the GPU platform used in this system is NVIDIA
hardware, we are using NVIDIA’s Cg shader language. The
OpenGL texture format used is
GL_TEXTURE_RECTANGLE NV, which allows textures
to be non-power-of-two (NPOT) in each dimension.
Although the antecedent and input membership functions are
required to be a power of two in order to achieve optimal
performance, NPOTs permit the consquent and output
membership functions to be of arbitrary size. The
cgGLGetLatestProfile function is used to have the system
automatically select the most optimal fragment profile. All
Cg variables are 16-bit floating point data-types (referred to
as the half type in Cg). Most GPUs operate faster when
using half versus float (32 bit precision) data-types, which
makes sense given the precision difference. Additionally,
the internal format (for OpenGL) of the textures is
GL_RGBA16, because we use a half precision data type.
Conveniently, this format automatically clamps to the range
[0.0, 1.0], which simplifies many of the fuzzy logic
calculations. The GPU programs are designed without any
conditional or looping structures. Since CPUs and CPU
languages have been heavily optimized for these types of
program constructs, and GPUs have not, it is best to avoid
their use in GPU programs if at all possible.

The GLUT (OpenGL Utility Toolkit) API is used to
provide access to the windowing system, while the GLEW
(OpenGL Extension Wrangler) API is used for access to
OpenGL extensions. Frame buffer objects (FBOs) are used
to render to off-screen destinations, specifically textures, on
the GPU. The FBO is a GPU feature that allows for higher
speed processing, by keeping data on the GPU as long as
possible, and avoiding transfers back and forth to the CPU.
The general concept of GPGPU programming is packing
data into textures, rendering screen-aligned quadrilaterals
that result in a one-to-one mapping of pixels to fragments,
and executing fragment programs that perform calculations
with the data (fuzzy logic, in this case). One can find a full
length, detailed introduction to GPGPU programming at [4].
Figure 9 illustrates our GPU Fuzzy Logic program flow.

X. RESULTS

In order to evaluate the performance gain of GPU Fuzzy
Logic, comparison to a traditional CPU program is
necessary. This CPU program mimics the actions of the
GPU program as closely as possible, while still attempting to
take advantage of those features of a traditional CPU which
can provide some performance benefit. Each program was
timed while it performed identical fuzzy logic calculations.
The amount of time used by the GPU program was then
compared to the amount of time used by the CPU program.

2008 IEEE Congress on Evolutionary Computation (CEC 2008)

CPU
Antecedent Consequent Input Output
Membership Membership Membership Membership
Functions Functions Functions Functions
A
" \ GPU
Antecedent Consequent Input Output
Membership Membership Membership Membership
Functions Functions Functions Functions
A
Rule
Construction Inference
A
A \ 4
Antecedent Output
Membership Inference (before
Functions reduction)

Fig. 9. Program Data Flow

These experiments were performed on a PC, with 4 GB of
RAM, a 2.66 GHz, 64-bit, Intel Core 2 Quad CPU, Visual
Studio C++ 2005 Express Edition, running Windows Vista
as the operating system. The GPU is an NVIDIA GeForce
8800 GTX, which has 128 stream processors, a core clock of
575 MHz, shader clock of 1350 MHz, and is capable of
approximately 350 GFLOPS [10]. The times reported below
are for the rule construction and inference steps only; they
do not include the time spent on initialization for either the
CPU or GPU versions of the program. The reason for this is
that initialization is done only once, at startup, and can
therefore be considered an off-line process. This is a
reasonable assumption for any control or general soft-
computing system continuously processing data using fuzzy
logic.

The size of the rule base is constrained to numbers that we
felt represented fairly common configurations, but the
number of rules is not limited to these sizes. The number of
inputs was varied in the experiments, and large sizes were
intentionally chosen. One of our current research topics is
continuous video monitoring of elders for well-being
assessment and abnormal event detection. This project uses
fuzzy inference for reasoning about activities, based on
features which are extracted from a three dimensional
representation of the human. Image processing and object
reconstruction are used to build this representation [14, 15].
We use at least two cameras in each room, in each
apartment, and images are captured at 3 frames per second.
This generates 10,800 inference inputs for a Fuzzy Logic
system to process, for each resident in each room in each
apartment for a single hour. There are a large number of
inference inputs in this system, relative to the number of
rules in the rule base (we currently have 53 rules). Tests of
the GPU and CPU Fuzzy Logic implementations were
configured to simulate systems of this general structure.

In order to put a large number of inputs through the
inference process, multiple passes are used. After each set

3813

Authorized licensed use limited to: University of Missouri. Downloaded on January 13, 2009 at 16:43 from IEEE Xplore. Restrictions apply.

of inputs is processed, it is read back to main memory, and a
new set of inputs is written to the texture memory on the
GPU. A similar process is used for the CPU version of the
program, except that it is obviously not necessary to read
and write to texture memory. The profiles shown below are
based on the processing of random data, which was required
to achieve the various profiles necessary to show GPU
Fuzzy Logic under different workloads. Table 1 reports the
performance gain of GPU Fuzzy Logic. Note that all
operations are performed simultaneously in all four color
channels, thus each input can actually be thought of as four
inputs, each rule as four rules, and so on.

The degree of speed obtained by using the GPU is
dependent on the exact configuration of the system. In the
first experiment, the GPU performed the calculations
approximately 154 times as fast as the CPU. In the second
experiment, a speedup of approximately a factor of 178 was
obtained. And in the third test, an improvement of
approximately 190 times was seen. These performance
gains are rationalized by the fact that the NVIDIA 8800 has
128 shader processors (potential for around two orders of
magnitude gain), the operations performed in GPU fuzzy
rule construction and inference are native to the GPU and
can be issued in parallel to components packed into an
<X,Y,Z,W> vector format (hence operator calculation
improvements), and multiple rules can be fired
simultaneously through our discussed packing scheme.
These performance gains are even greater than those we
previously reported for fuzzy c-means (FCM) clustering on a
GPU [1, 2], which were slightly over two orders of
magnitude, for particular high-throughput clustering profiles.

XI. CONCLUSIONS AND FUTURE WORK

As demonstrated in this paper, the GPU Fuzzy Logic
implementation outperforms the CPU implementation by
over two orders of magnitude, under certain configurations.
The trade-off for this speed increase is that the GPU
implementation is significantly more complex, and there is
more time spent on initialization. As with most GPGPU
applications, these disadvantages become outweighed by the
speedup, with a sufficiently large data set.

The number of rules that are disabled due to masking does
not affect performance. In our tests, only a relatively small
proportion of the rules were enabled at any one time. With a
more efficient rule base organization scheme, however, a
larger number of rules could be unmasked and considered
active; this would require no additional processing time, but
would allow for greater throughput in the inference process.

The next, direct extension to this work 1is the
implementation of a de-fuzzification step on the GPU. Also,
as stated above, the tradeoff for the speed gained in using the
GPU for Fuzzy Logic is an increase in the difficulty of the

3814

TABLE 1
RESULTS
Platform: CPU/GPU
One Antecedent Rules
Antecedent Size: 32
Consequent Size: 32 164.955/1.07 s
Total Size of Rule Base: 1024 =154.16s

Number of Unmasked Rules: 32
Each of 16384 Inputs Passed Through 32 Rules

One Antecedent Rules
Antecedent Size: 64
Consequent Size: 64
Total Size of Rule Base: 4096
Number of Unmasked Rules: 64
Each of 131072 Inputs Passed Though 64 Rules

18463.3s/26.4 s
=17753s

Two Antecedent Rules
Antecedent Size: 64
Consequent Size: 64
Total Size of Rule Base: 64
Number of Unmasked Rules: 64
Each of 16384 Inputs Passed Though 64 Rules

162530.0s/855.8 s
=189.92s

The next, direct extension to this work is the
implementation of a de-fuzzification step on the GPU. Also,
as stated above, the tradeoff for the speed gained in using the
GPU for Fuzzy Logic is an increase in the difficulty of the
implementation, relative to a program written in a language
such as Matlab, or even C. In order to maximize the number
of researchers and end users that can use a GPU accelerated
Fuzzy Logic system, we plan to use NVIDIA’s new CUDA
language to write C language programs that are translated to
the GPU, bypassing the need to use a shader language such
as Cg. The performance is not expected to be as great, but
the familiarity of programmers with C is greater.

XII. ACKNOWLEDGEMENTS

This research was partially supported by the National
Science Foundation (ITR award 11S-0428420) and the
National Institutes of Health (5R21AG026412-02). D.
Anderson and R. Luke are pre-doctoral biomedical
informatics research fellows funded by the National Library
of Medicine (T15 LMO07089).

2008 IEEE Congress on Evolutionary Computation (CEC 2008)

Authorized licensed use limited to: University of Missouri. Downloaded on January 13, 2009 at 16:43 from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Derek Anderson, Robert H. Luke, and James M. Keller, “Speedup of
Fuzzy Clustering Through Stream Processing on Graphics Processing
Units,” IEEE Transactions on Fuzzy Systems, 2007.

[2] Derek Anderson, Robert H. Luke, and James M. Keller, “Incorporation
of Non-Euclidean Distance Metrics into Fuzzy Clustering on Graphics
Processing Units.” Proceedings, International Fuzzy Systems Association
Conference, 2007.

[3] Chris Harris, Karen Haines, “Iterative Solutions using Programmable
Graphics Processing Units,” IEEE International Conference on Fuzzy
Systems, 2005.

[4] GPGPU, <http://www.gpgpu.org/>.

[5] T.J. Purcell, “Ray Tracing on a Stream Processor,” Ph.D. Dissertation,
Standford University, 2004.

[6] J. Krueger and R. Westermann, “Linear algebra operators for gpu
implementation of numerical algorithms,” ACM Transcriptions on Graphics
(TOG), vol. 22, no. 3, 2003, pp. 908-916.

[71 K. Moreland and E. Angel, “The FFT on a GPU,” SIGGRAPH
Eurographics Workshop on Graphics Hardware 2003 Proceedings, 2003, pp.
112-119.

[8] L. Zadeh, “Fuzzy sets,” Information Control, 1965, pp. 338-353.

[91 L. A. Zadeh, “Outline of a new approach to the analysis of complex
systems and decision processes,” in [EEE Transactions on System, Man,
and Cybernetics, vol. SMC-3, 1973, pp. 28-44.

2008 IEEE Congress on Evolutionary Computation (CEC 2008)

[10] NVIDIA Corp., “GeForce 8800,” 2006,
<http://www.nvidia.com/page/geforce_8800.html>.

[11] J. D. Owens, et al., “A Survey of General-Purpose Computation on
Graphics Hardware,” Eurographics 2005, State of the Art Reports, August,
2005.

[12] M. Cirstea, J. Khor, M. McCormick, “FPGA fuzzy logic controller for
variable speed generators,” Proceedings of the 2001 IEEE International
Conference on Control Applications, pp. 2001.

[13] Hiroyuki Watanabe, Wayne D. Dettloff, and Kathy E. Yount, “A
VLSI Fuzzy Logic Controller with Reconfigurable, Cascadable
Architecture,” IEEE Journal of Solid-State Circuits, vol. 25, no. 2, 1990, pp.
376-382.

[14] D. Anderson, R.H. Luke, J. M. Keller, M. Skubic, “Modeling Human
Activity From Voxel Person Using Fuzzy Logic,” Under Review, IEEE
Transactions on Fuzzy Systems, 2007.

[15] D. Anderson, R.H. Luke, J. M. Keller, M. Skubic, “Linguistic
Summarization of Activities from Video for Fall Detection Using Voxel
Person and Fuzzy Logic,” Under Review, ComputerVision and Image
Understanding, 2007.

[16] G.J. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic, Upper Sadle River,
NJ: Prentice Hall PTR, 1995, pp. 231-236, 327-343.

3815

Authorized licensed use limited to: University of Missouri. Downloaded on January 13, 2009 at 16:43 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

