
IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 16, NO. 4, AUGUST 2008 1101

[16] B. Liu, Theory and Practice of Uncertain Programming. Heidelberg,
Germany: Physica-Verlag, 2008.

[17] B. Liu, Uncertainty Theory: An Introduction to its Axiomatic Foundations.
Berlin, Germany: Springer-Verlag, 2004.

[18] B. Liu, “A survey of credibility theory,” Fuzzy Optim. Decision Making,
vol. 5, pp. 387–408, 2006.

[19] B. Liu, “A survey of entropy of fuzzy variables,” J. Uncertain Syst., vol. 1,
pp. 4–13, 2007.

[20] B. Liu and Y.-K. Liu, “Expected value of fuzzy variable and fuzzy expected
value models,” IEEE Trans. Fuzzy Syst., vol. 10, no. 4, pp. 445–450, Aug.
2002.

[21] N. R. Pal and S. K. Pal, “Objective background segmentation using a new
definition of entropy,” IEE Proc. E, vol. 136, pp. 284–295, 1989.

[22] N. R. Pal and J. C. Bezdek, “Measuring fuzzy uncertainty,” IEEE Trans.
Fuzzy Syst., vol. 2, no. 2, pp. 107–118, May 1994.

[23] M. R. Simonelli, “Indeterminacy in portfolio selection,” Eur. J. Oper.
Res., vol. 163, pp. 170–176, 2005.

[24] R. R. Yager, “On measures of fuzziness and negotiation, Part I: Mem-
bership in the unit interval,” Int. J. General Syst., vol. 5, pp. 221–229,
1979.

[25] H. Markowitz, “Portfolio selection,” J. Finance, vol. 7, pp. 77–91, 1952.
[26] H. Markowitz, Portfolio Selection: Efficient Diversification of Investments.

New York: Wiley, 1959.
[27] D. N. Nawrocki and W. H. Harding, “State-value weighted entropy as

a measure of investment risk,” Appl. Econ., vol. 18, pp. 411–419,
1986.

[28] M. A. Parra, A. B. Bilbao, and M. V. R. Urı́a, “A fuzzy goal programming
approach to portfolio selection,” Eur. J. Oper. Res., vol. 133, pp. 287–297,
2001.

[29] G. C. Philippatos and C. J. Wilson, “Entropy, market risk, and the
selection of efficient portfolios,” Appl. Econ., vol. 4, pp. 209–220,
1972.

[30] G. C. Philippatos and N. Gressis, “Conditions of equivalence among E–V,
SSD, and E–H portfolio selection criteria: The case for uniform, nor-
mal and lognormal distributions,” Manag. Sci., vol. 21, pp. 617–625,
1975.

[31] C. E. Shannon, The Mathematical Theory of Communication. Urbana,
IL: Univ. of Illinois Press, 1949.

[32] K. Smimou, C. R. Bector, and G. Jacoby, “A subjective assessment of
approximate probabilities with a portfolio application,” Res. Int. Bus.
Finance, vol. 21, pp. 134–160, 2007.

[33] H. Tanaka, P. Guo, and B. Türksen, “Portfolio selection based on fuzzy
probabilities and possibility distributions,” Fuzzy Sets Syst., vol. 111,
pp. 387–397, 2000.

[34] J. Watada, “Fuzzy portfolio selection and its applications to decision mak-
ing,” Tatra Mountains Math. Publication, vol. 13, pp. 219–248, 1997.

Speedup of Fuzzy Clustering Through Stream Processing
on Graphics Processing Units

Derek T. Anderson, Robert H. Luke, and James M. Keller

Abstract—As the number of data points, feature dimensionality, and
number of centers for clustering algorithms increase, computational
tractability becomes a problem. The fuzzy c-means has a large degree
of inherent algorithmic parallelism that modern CPU architectures do not
exploit. Many pattern recognition algorithms can be sped up on a graphics
processing unit (GPU) as long as the majority of computation at various
stages and the components are not dependent on each other. We present a
generalized method for offloading fuzzy clustering to a GPU, while main-
taining control over the number of data points, feature dimensionality, and
the number of cluster centers. GPU-based clustering is a high-performance
low-cost solution that frees up the CPU. Our results show a speed increase
of over two orders of magnitude for particular clustering configurations
and platforms.

Index Terms—Fuzzy clustering, fuzzy c-means, graphics processing
units (GPUs), stream processing.

I. INTRODUCTION

Graphics processing units (GPUs) herald a new way to perform
general purpose computing on hardware that is better suited for many
image processing and pattern recognition algorithms. However, there
is a GPU learning curve related to programming and setting up the en-
vironment in order to exploit its advantages. In addition, many pattern
recognition algorithms are not designed in a parallel format conducive
to GPU processing. There may be too many dependencies at various
stages in the algorithm that will slow down GPU processing. In these
cases, such as the parameter update step in fuzzy clustering, the algo-
rithm must be altered in order to be computed fast on a GPU.

Improving the computational performance of clustering is not a new
concept. Shankar and Pal presented a progressive subsampling method
called fast fuzzy c-means (FFCM) [1]. FFCM generates a sequence of
extended partitions of the entire dataset by applying the original FCM to
a nested sequence of increasing size subsamples. It terminates when the
difference between successive extended partitions is below a threshold.
Speed is always a concern, but so is the size of the dataset. In [2],
Pal and Bezdek developed the extensible FFCM (eFFCM) clustering
algorithm for the segmentation of very large digital images. In [3],
Hathaway and Bezdek discuss an extension of the eFFCM method,
geFFCM, to nonimage object data.

It should be made clear that we are presenting a procedure to trans-
fer fuzzy clustering to specialized hardware, which is different from
many previous attempts to find algorithmic or mathematical reformu-
lations. As improvements are made to the clustering algorithms, they
can be converted to a GPU implementation for additional performance
enhancement. Our research goal is to present a different computational
platform for clustering.

Harris and Hanes conducted the only known previous research in the
area of offloading clustering to a GPU in [4]. In their paper, a speedup
of 1.7–2.1 times over a CPU is reported for a NVIDIA GeForceFX

Manuscript received March 21, 2007; revised May 31, 2007; accepted
July 21, 2007. This work was supported by the National Library of Medicine
under Grant T15 LM07089.

The authors are with the Department of Electrical and Computer En-
gineering, University of Missouri, Columbia, MO 65211 USA (e-mail:
dtaxtd@mizzou.edu; rhl3db@mizzou.edu; kellerj@missouri.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TFUZZ.2008.924203

1063-6706/$25.00 © 2008 IEEE

Authorized licensed use limited to: University of Missouri. Downloaded on January 13, 2009 at 16:54 from IEEE Xplore. Restrictions apply.

1102 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 16, NO. 4, AUGUST 2008

5900 Ultra. Their method is designed to handle three linearly separa-
ble clusters with a dimensionality of 3. The benefit is that they can
handle a large number of data points. A problem is that the proposed
formulation is not scalable. As the method is presented, it is not capa-
ble of extension with respect to either the feature dimensionality size
or number of cluster centers. They acknowledge this and state that it
would be a large undertaking. These problems are addressed in this
short paper.

We focus on the FCM as an example, but many high-throughput
problems, such as a protein sequence structure search, are excellent
candidates for GPU enhancement. In the following sections, we: 1)
present a brief overview of the FCM; 2) provide an introduction to
GPUs; 3) discuss the generalized algorithm for computing fuzzy clus-
tering on a GPU; 4) present the experiments; 5) display the results; and
6) discuss extensions to this research. Source code and a technical re-
port that discusses implementation are available at http://cirl.missouri.
edu/gpu/.

II. CLUSTERING

Clustering is an unsupervised learning procedure that can be
used to reveal patterns in a collection of data, denoted by X =
{x⇀1 , . . . , x

⇀
N }. Each sample vector contains K features, represented

as x⇀i = (fi1 , . . . , fiK). Each cluster can be represented by a set of pa-
rameters θj (1 ≤ j ≤ C). In the simplest case, θj is a K-dimensional
vector representing the jth cluster center. In the standard approach [6],
the clustering algorithm alternately estimates the collection of clus-
ter centers, θ = {θ1 , . . . , θC }, and a membership matrix U, where
the membership of the ith sample in the jth cluster is denoted by
u(i ,j) . In the hard c-means (HCM) clustering algorithm, cluster mem-
bership values are crisp, i.e., u(i ,j) ∈ {0, 1}. Fuzzy clustering allows
u(i ,j) ∈ [0, 1], i.e., each element can be shared by more than one clus-
ter. Fuzzy clustering follows the principle of least commitment, which
is the belief that one should never overcommit or do something that
might have to be later undone [5]. The problem, originally proposed
by Bezdek [6], is defined as

JFCM(θ, U) =
C∑

j=1

N∑
i=1

uq
(i ,j)d (x⇀i , θj)

where
C∑

j=1

u(i ,j) = 1, for i = 1, . . . , N

x⇀i ∈ X and |X | = N.

In the JFCM equation, d(x⇀i , θj) is a distance metric and q > 1 is a
parameter called the fuzzifier, typically q = 2. The update equations
found as necessary conditions to minimize JFCM for the membership
values uFCM

(i ,j) and the cluster center locations are

uFCM
(i ,j) =

1∑C

k=1

(
d (x⇀

i
,θ j)

d (x⇀
i
,θk)

)1/q−1 (1)

θj =

∑N

i=1

(
uq

(i ,j)x
⇀

i

)
∑N

i=1 uq
(i ,j)

. (2)

III. GRAPHICS PROCESSING UNITS

Until about a decade ago, programmers had to rely on the CPU for
mathematical transformations, rasterization, shading, and other graph-
ics operations. There was a big need to offload these operations from a

Fig. 1. Stages in the graphics pipeline with programmable GPU components
noted by dashes.

Fig. 2. Primitive rasterization and shading stages. (a) Phase 1 is the specifica-
tion of vertices. (b) Phase 2 is primitive assembly. (c) Phase 3 is rasterization of
the primitive into fragments. (d) Phase 4 is per fragment shading.

CPU to specialized hardware. GPUs were invented in order to gener-
alize the graphics pipeline and the interface to it. GPUs are significant
as they free up the CPU and offer high-end specialized computing at
relatively low costs.

The key to understanding how to program a GPU is in the design of
the host driver application, the graphics pipeline and GPU processor
programming. Fig. 1 shows the stages in the graphics pipeline with
programmable GPU components noted by dashed boxes, and Fig. 2
shows the standard operations in the graphics pipeline.

The process of rendering a triangle with respect to the standard
graphics pipeline is shown in Fig. 2. Vertices are specified, the primi-
tive is rasterized into fragments, and the fragments are finally shaded.
The two current programmable components of a GPU are the vertex
and fragment units. Vertex processors are intended for transformations
on vertices, such as conversions between object space, world space, eye
space, clip space, and texture coordinate generation. Fragment proces-
sors, also known as pixel shaders, typically support a greater degree of
operational and texture sampling functionality. Because a few vertices
are responsible for the generation of many fragments, the workload is
typically on the backend, and there are usually more fragment proces-
sors than vertex processors. A good GPU introduction and architecture
overview can be found in [7] and [8].

GPUs are specialized stream processors. Stream processors are ca-
pable of taking large batches of fragments that can be thought of as
pixels in image processing applications, and computing similar in-
dependent calculations in parallel. The vendor and generation of the
adapter determine the number of fragment processors. Each calculation
is with respect to a program, often called a kernel, which is an operation
applied to every fragment in the stream.

The computational power of GPUs is increasing significantly faster
than CPUs. The annual growth in CPU processing power is approx-
imately 1.4, while GPU development is approximately 1.7 for pixel
processors and 2.3 for vertex processors [9]. GPUs have instructions
to handle many linear algebra operations given their vector processing
architecture. GPUs support operations such as the dot product, vector
and matrix multiplication, and computing the determinant of a matrix.

Authorized licensed use limited to: University of Missouri. Downloaded on January 13, 2009 at 16:54 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 16, NO. 4, AUGUST 2008 1103

Fig. 3. Clustering parameters packed into texture memory. Texture formats
are comprised of combinations of RGBA channels.

GPUs are also capable of executing more floating point operations per
second. A 3.0-GHz dual-core Pentium 4 can execute 24.6 GFLOPS,
while an NVIDIA GeForceFX 7800 can execute 165 GFLOPS [9]. The
new NVIDIA GeForce 8800 GTX has 128 stream processors, a core
clock of 575 MHz, a shader clock of 1350 MHz, and is capable of over
350 GFLOPS [10].

IV. FUZZY CLUSTERING ON A GPU

The key concept required for converting a CPU program to a GPU
program involves the idea that arrays are equivalent to textures. Data
used in a GPU program are passed from the CPU as a texture. Fig. 3 is
our proposed texture packing scheme.

The dataset is packed into a texture that holds red, green, blue,
and alpha data (RGBA). There are N rows, one for each data point,
and �F/4	 columns, where �∗	 represents the “ceiling” of ∗, i.e., the
smallest integer greater than or equal to ∗. F represents the feature
dimensionality, which is divided by four because four values can be
packed into each pixel. The latest NVIDIA 8800 adapter supports
textures of size 8192 × 8192. A method to overcome the row size
limitation, allowing for over a million data points, is discussed later
after each packing format is described.

The membership values are scalars and can be encoded into a single-
channel texture. Again, only up to 8192 data points can be packed into
a single texture, given the texture row size limitation. There are C
columns, where C represents the number of clusters, limiting the size
to at most 8192 clusters. Again, we discuss a method later to bypass
these texture size-related limitations.

In order to avoid computing the same dissimilarity values repeatedly
at multiple stages in the fuzzy clustering algorithm, all values are
precomputed for each FCM iteration. Just like the membership values
texture, we pack these scalar values into a single-channel image that is
N rows × C columns.

The last representation is the cluster centers. The cluster centers
share the same feature dimensionality as the data points, so this impacts
the column size in a similar fashion. However, instead of packing the
vectors in a row format, we pack them in a column format. The number
of columns is �F/4	 × C . This way, all cluster centers can be encoded
in one row of the texture. The number of rows for this texture is,
however, set equal to the number of input vectors. All rows after the
first are initialized to zero (see Fig. 3). This is explained shortly when
we show the reduction procedure for cluster parameter updating. The
six-pass FCM GPU algorithm is shown in Fig. 4.

Fig. 4. Generalized GPU algorithm for fuzzy clustering. X is the dataset
texture, C is the cluster centers texture, M stores the membership values, and
D is the dissimilarity matrix. GPU P1, program 1, calculates the dissimilarity,
GPU P2 is the membership update step, GPU P3 calculates the numerator terms
in the cluster centers update equation, GPU P4 and GPU P5 are reduction steps
that compute the summation terms in the numerator and denominator for cluster
centers update, and GPU P6 calculates the final updated centers.

GPU P1, program 1, computes the dissimilarity values for each data
point to each cluster center. GPU P2 takes these dissimilarity values
and computes the new membership values (1). The membership values,
raised to the qth power, are used by the following GPU passes. Thus, we
compute the membership values and raise them to the qth power to avoid
recomputing these values. Program P3 takes these membership values
and creates an array of data points multiplied by their membership
values [individual terms in the top part of (2)].

A reduction in this context is the repeated application of an operation
to a series of elements to produce a single-scalar result. The reduction
procedure here is the addition of a series of elements in texture memory,
where operations are running in parallel given the number of fragment
processors on a particular GPU. GPU P4 performs a reduction on the
numerator of (2). GPU P5 performs membership value reduction, which
is the denominator of (2). GPU P6 runs on C elements, dividing the P4
values by those calculated in P5, which results in the updated cluster
centers (2).

Reduction takes log2 (N) number of passes, where each pass pro-
cesses a fraction of the last iteration’s results. The first pass processes
N /2 elements per column, the next pass processes N /4 elements per
column, and so forth. Each iteration is responsible for handling N /2i

elements per column, where i is the iteration number. The reduction
procedure is shown in Fig. 5 for two columns.

As previously stated, current hardware has a maximum texture size
of 8192 × 8192, which impacts the maximum number of data points in
our proposed format. A method to bypass the 8192 limitation involves
packing samples into a set of columns in the same texture. We define H
as the number of rows in the texture, which corresponds to the number
of data points packed into a single-column set. For the NVIDIA 8800,

Authorized licensed use limited to: University of Missouri. Downloaded on January 13, 2009 at 16:54 from IEEE Xplore. Restrictions apply.

1104 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 16, NO. 4, AUGUST 2008

Fig. 5. GPU reduction procedure, summation operation, for a texture with two
columns and eight rows. At each step, log2 (N) total steps, N/2i , where i is
the iteration index, and elements in a single column are pairwise summed. Each
column results in the summation of values for a respective column.

Fig. 6. Packing of input vectors into multiple columns within the dataset
texture in order to support a greater number of samples.

Fig. 7. Column set summation per cluster. Vertical reduction accumulates the
vectors in the cluster center matrix, labeled (a) through (p), into the first row,
shaded above. Column set summation is the accumulation of vectors in the first
row over column sets per cluster.

the maximum H is 8192. The column set width is �F/4	. This is
usually possible because the dimension F , and in particular �F/4	, is
normally much smaller than 8192. The only limitation is the size of the
GPU texture memory. Fig. 6 displays this format.

The other textures change accordingly with respect to the new col-
umn format. The membership and distance matrices were N × C
and are now H × C × S, where S is the number of column sets
S = �N/H	. The cluster center matrix is also increased by a factor
of S in the column texture dimension. This packing scheme requires
an additional GPU program, a column set summation. The column set
summation GPU pass is placed after GPU P5 in Fig. 4. Fig. 7 illustrates
the column set summation pass.

The cluster centers matrix in Fig. 3 contains zeros in all texture
positions except for the first row. This is shown in order to stress the
fact that only the first row stores the cluster centers. The reason for
all the extra rows is to perform the reduction process described earlier.

GPU P3 populates the cluster center matrix with the numerator terms
in (2). It is not necessary to initialize the cluster centers matrix with
zeros in all rows after the first. The only data that need to be passed
down to the GPU, as well as transferred back at the end of the FCM
GPU algorithm, belong to the first row.

Frame buffer objects (FBOs) are an extension to OpenGL that allow
for rendering to destinations other than the default buffers used by the
windowing system. This is one of the enabling steps for using a GPU for
general purpose computing. FBOs allow for rendering to a GPU texture.
This is the quintessential step for fast multipass processing of data on
a GPU. If a single FBO is used, then all textures must have the same
format and dimension. Multiple FBOs can be used in order to avoid
wasting texture memory. The four texture formats proposed in Fig. 3
are not all the same size, which would result in a significant waste of
memory in the case of the dissimilarity and membership matrices. The
simplest approach to solving this problem involves utilizing a separate
FBO for each different texture format and size. The dataset matrix
would require an FBO, the membership and dissimilarity matrices
could share an FBO, and the cluster centers matrix would require an
FBO. Hence, three FBOs could be used in order to minimize the amount
of texture memory wasted on a GPU for the FCM.

Using an NVIDIA 8800, the format displayed in Fig. 6, and the
multiple FBO mechanism mentioned earlier, we can support profiles
such as 4 194 304 data points of dimensionality four with four cluster
centers, or 131 072 data points of dimensionality 32 with 16 cluster
centers. Fig. 4 indicates that the texture used for the dissimilarity matrix
is used only in GPU P1 and GPU P2. Therefore, from GPU P3 to
GPU P6, this texture can be used for other purposes. It can be used
in GPU P5 to help in the membership matrix reduction calculation.
Fig. 4, in particular GPU P4 and GPU P6, shows that two textures will
be needed for the cluster centers matrix. Using these assumptions, the
calculation for the amount of memory needed for a specific clustering
profile can be found according to the equation at the bottom of the
page, where Qj denotes the number of floating point values needed
for all textures with a specific texture format and size. The inner sum
is multiplied by B in order to account for the number of bytes in the
floating point representation used. Q1 represents the number of floats in
the dataset texture. The 4 in this calculation is to take into account that
the pixel is RGBA. Q2 is the size of the membership and dissimilarity
matrices. It is multiplied by 1 because it only uses a single color channel
and the 2 signifies that only two textures of that format and size are
necessary. Q3 is for the cluster center matrix. The 2 is in there because
a second copy of this texture is needed, and the 4 represents that RGBA
is used. Using the aforementioned equation, one may verify that his
or her particular cluster profile will fit into the GPU texture memory
size.

V. EXPERIMENTS

There is a tradeoff in terms of time spent setting up the GPU pro-
grams, which were developed using the Cg, i.e., C for graphics lan-
guage, transferring texture memory from CPU to GPU, and managing
the graphics pipeline. This means that there are situations where it
is more efficient to implement the FCM on the CPU rather than on
the GPU. GPUs are the most efficient when large batches of data are
presented to them. We vary the number of data points, feature di-
mensionality, and the number of cluster centers to show performance

((Q1) + (Q2) + (Q3)) ∗ B =
((

H ∗
⌈

F

4

⌉
∗ S ∗ 4

)
+ (H ∗ C ∗ S ∗ 1 ∗ 2) +

(
H ∗

⌈
F

4

⌉
∗ C ∗ S ∗ 2 ∗ 4

))
∗ B

Authorized licensed use limited to: University of Missouri. Downloaded on January 13, 2009 at 16:54 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 16, NO. 4, AUGUST 2008 1105

TABLE I
CPU/GPU PROCESSING TIME RATIO FOR 4096 POINTS, 64 CLUSTERS,

AND 4 DIMENSIONS

results for various clustering profiles. The tables later show the speedup
of clustering on a GPU, but do not reflect the fact that the CPU is freed
up to perform additional computing. This means that this computer
can be used for other computation at the same time as the GPU is
performing the FCM, or it can be used for clustering on the CPU and
GPU simultaneously, hence increasing the productivity of the entire
platform.

Two unique CPU models and three unique GPU models are bench-
marked later. The idea is to show differences as they relate to price,
computing power, and manufacturer. We used an Intel Core 2 Duo
T7200 and an AMD Athlon 64 FX-55, each of which had 2 GBs of
system RAM. The GPUs used were: 1) NVIDIA 7800 BFG GS OC
with 256 MB of texture memory, 16 fragment pipelines, and a bus
interface of 8X AGP; 2) NVIDIA Quadro FX 2500M with 512 MB
of texture memory, 24 fragment pipelines, and a bus interface of PCI
Express X16; and 3) NVIDIA 8800 BFG GTX with 768 MB of texture
memory, 128 stream processors, and a bus interface of PCI Express
X16.

Our operating system is Windows XP with Service Pack 2 and we are
using Visual Studio 2005. The GLEW version is 1.3.4, GLUT version
3.7.6, and Cg version 1.5. Streaming SIMD Extensions 2 (/arch:SSE2),
whole program optimization, and maximize speed (/02) were enabled
for the CPU in Visual Studio. The proximity metric used is the Eu-
clidean distance, which gives a fair comparison between the CPU and
GPU. More computationally expensive proximity measures can be
computed faster on a GPU, which is capable of utilizing built-in in-
structions such as vector and matrix multiplication, dot products, and
other linear algebra operations. In [11], we show how to incorporate
non-Euclidean distance metrics, specifically the Mahalanobis distance,
into GPU fuzzy clustering.

Because we are not presenting new metrics or clustering algorithms,
but rather a speedup method for fuzzy clustering, we use randomly
generated clusters. No common datasets from the community were
used. We needed many cluster configurations, so we randomly gener-
ated spherical clusters of the same size with random means. In order
to test the GPU’s precision, we compared the GPU results to our CPU
FCM implementation, and also to the MATLAB FCM function. In
our C implementation, we use the same 32-bit floating-point precision
employed in our GPU implementation. MATLAB uses doubles. The
C program has the same algorithmic design and final precision as our
GPU program.

VI. RESULTS

Tables I–III show CPU over GPU processing time ratios for different
feature dimensionalities. We used a single 4096-size row, which is the
common maximum row texture size among the various GPUs that were
used for benchmarking.

Tables I–III show impressive computational speed improvements for
a GPU versus the CPU. Depending on the particular GPU and CPU, one
to two orders of magnitude improvement is observed. The performance
numbers are entirely dependent on the GPU generation and CPU that it
is compared to. As each new generation of GPU emerges,performance

TABLE II
CPU/GPU PROCESSING TIME RATIO FOR 4096 POINTS, 64 CLUSTERS,

AND 32 DIMENSIONS

TABLE III
CPU/GPU PROCESSING TIME RATIO FOR 4096 POINTS, 16 CLUSTERS,

AND 128 DIMENSIONS

TABLE IV
CPU/GPU PROCESSING TIME RATIO TREND FOR THE 32 BIT INTEL

AND NVIDIA 8800

TABLE V
CPU/GPU PROCESSING TIME RATIO TREND FOR THE 32 BIT INTEL

AND NVIDIA 8800

numbers are expected to increase, given the popularity of these devices
and the need for stream processing. Tables IV and V show the perfor-
mance behavior when we fix the dimensionality and let the number of
clusters and data points vary for the best CPU and GPU.

The results in Tables IV and V indicate that when only a few clusters
and data points are pushed down to the GPU, performance gain is min-
imal. In some cases, the CPU is even faster. However, as the number of
data points increases, the GPU becomes faster. The largest speed im-
provements are noticed as the number of clusters is increased. Table VI
shows the actual time, reported in seconds, required to compute a few
clustering profiles on the GPU.

Authorized licensed use limited to: University of Missouri. Downloaded on January 13, 2009 at 16:54 from IEEE Xplore. Restrictions apply.

1106 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 16, NO. 4, AUGUST 2008

TABLE VI
TIME IN SECONDS FOR VARIOUS CLUSTERING PROFILES

ON THE NVIDIA 8800

VII. CONCLUSION AND FUTURE WORK

In this short paper, we presented a novel methodology to perform
fuzzy clustering on common devices normally used for graphics ap-
plications. While we specifically described the FCM algorithm, the
general outline can be adapted to many other heavy computational
techniques. This opens up the potential to perform clustering (and
other) algorithms on large datasets at low cost and in a somewhat real-
time environment, for example, segmenting a continuous video stream
or for bioinformatics applications (like the basic local alignment search
tool (BLAST) searches).

With respect to the algorithm and its implementation, future exten-
sions include the topic of exploring various reformulations or reduc-
tions in the clustering algorithms or mathematics. We computed the
FCM equation in its literal form. We expect, but need to verify, that
reductions in the algorithm generate relative computational savings if
implemented on a GPU. In addition, we plan to see how a cluster of
low-end PCs equipped with GPUs performs larger clustering tasks. A

final area of extension deals with very large datasets. We intend to
take the eFFCM work described by Hathaway and Bezdek in [3] and
implement it on a single GPU, a cluster of PCs equipped with GPUs,
or multiple 8800 GPUs on a single machine connected together.

REFERENCES

[1] B. U. Shankar and N. R. Pal, “FFCM: An effective approach for large
data sets,” in Proc. 3rd Int. Conf. Fuzzy Logic Neural Nets Soft Comput.,
Iizuka, Fukuoka, Japan, 1994, pp. 332–332.

[2] N. R. Pal and J. C. Bezdek, “Complexity reduction for ‘large image’
processing,” IEEE Trans. Syst., Man, Cybern., Part B: Cybern., vol. 32,
no. 5, pp. 598–611, Oct. 2002.

[3] R. J. Hathaway and J. C. Bezdek, “Extending fuzzy and probabilistic
clustering to very large data sets,” Comput. Statist. Data Anal., vol. 51,
pp. 215–234, 2006.

[4] C. Harris and K. Haines, “Iterative solutions using programmable graphics
processing units,” in Proc. 14th IEEE Int. Conf. Fuzzy Syst. 2005, May,
pp. 12–18.

[5] D. Marr, Vision: A Computational Investigation into the Human Repre-
sentation and Processing of Visual Information. San Francisco, CA:
W. H. Freeman, 1982.

[6] J. C. Bezdek, Pattern Recognition With Fuzzy Objective Function Algo-
rithms. New York: Plenum, 1981.

[7] M. Pharr and R. Fernando, GPU Gems 2. Reading, MA: Addison-
Wesley, 2005.

[8] GPGPU. (2006, Nov. 18), Available: http://www.gpgpu.org/
[9] J. D. Owens et al., “A survey of general-purpose computation on graphics

hardware,” in Proc. Eurograph. 2005, State Art Rep., Aug. 2005, pp. 80–
113.

[10] Nvidia Corporation. (2006, Nov. 18), “GeForce 8800” [Online]. Available:
http://www.nvidia.com/page/geforce_8800.html

[11] D. Anderson, R. Luke, and J. M. Keller, “Incorporation of non-Euclidean
distance metrics into fuzzy clustering on graphics processing units,”
presented at the Int. Fuzzy Syst. Assoc. Conf., Cancun, Mexico, Jun.
2007.

Authorized licensed use limited to: University of Missouri. Downloaded on January 13, 2009 at 16:54 from IEEE Xplore. Restrictions apply.

