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Abstract— We present a method for improving human 

segmentation results in calibrated, multi-view environments 

using features derived from both pixel (image) and voxel 

(volume) space. The main focus of this work is to develop a low-

cost, vision-based system for passive activity monitoring of 

older adults in the home, to capture early signs of illness and 

functional decline and allow seniors to live independently. 

Silhouettes are extracted to address privacy concerns. Specific 

embedded assessment goals include daily gait, fall risk, and 

overall activity, as well as fall detection. To achieve these goals, 

accurate, robust segmentation of human subjects (silhouette 

extraction) from captured video data is required. We present a 

simple technique that makes use of features acquired from 

background subtraction results (silhouettes) of multiple 

calibrated cameras, along with the 3D voxel object formed 

from the intersection of those multiple silhouettes in a volume 

space to improve human segmentation results in dynamic 

environments; moving objects, non-human objects, and lighting 

changes often complicate this task. The technique is 

qualitatively evaluated on three data sequences, two of which 

were captured in an independent living facility for older adults. 

 
Keywords – activity monitoring, eldercare, smart 

environments, silhouette extraction 

I. INTRODUCTION 

S older adults are living longer, research has focused on 

developing new technologies to allow them to continue 

living independently. These technologies have aimed to 

monitor a broad array of activities and biological signals, 

with the ultimate goal of detecting changes, both short and 

long term, in older adults’ physical and/or cognitive 

function. Such detection mechanisms would facilitate 

medical interventions when needed by older adults, while 

allowing them to continue living in their preferred settings 

and reducing the strain on and need for expensive care 

facilities. 

 Recent work has focused on the use of passive infrared 

motion sensors in the home [1-3], for monitoring overall 

activity as well as walking speed. Such systems have shown 

promising results and addressed issues of privacy, but are 

somewhat limited by the coarseness of their measurements. 

Additionally, these systems alone are not able to quickly 

detect adverse events, such as falls, that may impact older 

adults; thus, requiring additional sensors for this task. 

This work focuses on developing a low-cost, vision-based 

system for passive monitoring of older adults. A vision-

based system could provide a more accurate, detailed 

assessment of an individual’s daily and long term activity in 

the home, while also addressing the need for quick detection 

of adverse events, such as falls. 

A major concern of vision-based monitoring systems is 

the need to maintain the privacy of those being monitored.  

Specifically, raw images cannot be stored. However, 

research has shown that video data anonymized through the 

use of silhouettes may address the privacy concerns of older 

adults to such video-based monitoring technologies [4]. 

This, along with automatic recognition algorithms, requires 

the robust segmentation of people from video data. 

This paper describes a method for improving automatic 

segmentation of humans from video data in dynamic 

environments with multiple, calibrated, static cameras, from 

which 3D voxel objects can be created, without the use of a 

high level tracking algorithm. Section II of this paper looks 

at related work. Section III gives a description of our video 

based monitoring system. Section IV discusses our method 

for improved human segmentation in calibrated, multi-view 

environments. Section V contains qualitative results of our 

method on three data sequences. Finally, Section VI contains 

concluding remarks and a discussion of future work. 

II.  RELATED WORK 

The construction of 3D voxel objects from multiple 

silhouettes, often referred to as shape from silhouettes, has 

been widely investigated [5-8]. The main application of such 

techniques has, for the most part, been in the field of 

markerless human motion analysis, with the goal of fitting 

articulated humanoid models of various complexities to the 

resulting 3D voxel objects [9]. Such systems have generally 

used three or more cameras in a constrained environment in 

order to obtain accurate results. 

The separate issue of acquiring silhouette images from 

video data has also been widely investigated, with the main 

approach being background subtraction [11]. Background 

subtraction techniques include mixture of Gaussians [12], 

Eigen-backgrounds [13], and Wallflower [14]. Such 

techniques aim to detect pixels or image blocks which vary 
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from a background model of the scene. Modifications have 

been introduced to handle shadows and other artifacts.  

By themselves, background subtraction techniques cannot 

infer the type of object (human, lighting, non-human, etc.) 

responsible for the resulting foreground segmentation. A 

higher-level of reasoning is required. Simple connected 

component based size and number thresholds, along with 

shape features, are generally insufficient given significant 

changes in the range and pose of humans and objects from 

the camera, or multiple people in the scene. Often, simple to 

sophisticated tracking algorithms which attempt to model 

human motion are employed to deal with this problem 

[10,15-18,22]. In some cases, tracking ability is limited to 

humans only in certain poses. Such systems have used both 

single and multiple cameras to attempt to track people. 

Additionally, work has been done in using vision-based 

tracking systems (single and multi-camera) for fall detection 

[19-21, 24] and good results have been reported. 

III. SYSTEM OVERVIEW 

Our system, shown in Figure 1, consists of two 

inexpensive web cameras, capturing 640x480 images, which 

are used to monitor the environment (room). The cameras 

are positioned to be roughly orthogonal, and the intrinsic and 

extrinsic calibration parameters of the cameras are estimated 

a priori. In order to preserve privacy, silhouettes are 

extracted from the captured video data using a background 

subtraction technique which fuses color and texture features, 

as described in [19]. 

Given extracted, corresponding silhouettes from each of 

the cameras, a 3D object, formed from the intersection of the 

projection of the two silhouettes into volume (voxel) space, 

can be constructed. For our work, the voxel space is 

discretized into 1x1x1 inch cubic elements and rooms as 

large as 30 ft. by 17 ft. by 8 ft. have been used for testing. 

Prior work has looked at the accuracy of fall detection, 

gait assessment, and body sway measurement algorithms 

using 3D objects constructed using our system, in relatively 

controlled environments, and excellent results have been 

achieved [24-26]. These results include comparisons of 

walking speed, left/right stride length, and left/right stride 

time with a GAITRite electronic mat, and body sway 

measurements with a Vicon marker based motion capture 

system. The algorithms have not tried to fit articulated, high 

degree-of-freedom human models to the 3D objects, in an 

effort to keep the computational complexity low. Instead, the 

algorithms are used to extract information directly from the 

3D voxel objects with minimal processing. 

Previous efforts have not generally addressed the issue of 

dynamic, un-controlled environments due to the challenges 

involved in robustly differentiating human silhouettes/3D 

objects from those of lighting changes, moving non-human 

objects, un-identified shadows, and other noise sources. 

Ultimately, operation in such conditions will be required for 

a practical system that can be used in a dynamic home 

setting. 

IV. METHODOLOGY 

In previous work validating the accuracy of our system for 

extracting gait parameter and other activity parameters, it 

was assumed that good silhouettes were already available. 

Specifically, the 3D voxel object used for analysis was taken 

to be the intersection resulting from the projection of the 

largest connected component from each of the silhouette 

images into voxel space. Given controlled settings, this 

assumption works well. However, in dynamic, uncontrolled 

environments, lighting changes, moved objects, and multiple 

people can result in many connected components in the 

extracted silhouette images. Furthermore, the size of each of 

these resulting connected components in image space is 

dependent on the position of the camera with respect to the 

object. Thus, a more detailed analysis is necessary.  

In order to achieve the goal of a real-time, low-cost vision 

system, we would like to avoid the use of computationally 

intensive tracking algorithms (mentioned in Section II) 

which attempt to model human motion, or at least have such 

algorithms be independent of the silhouette extraction 

process. Therefore, we have adopted a simple scheme that 

fuses image and voxel based features (leveraging the 3D 

Fig. 1. System overview. (a) Two cameras positioned orthogonally in 

the environment.  (b) Camera views of the same scene. (c) Extracted 

silhouette images. (d) Three dimensional voxel object formed by the 

intersection of silhouette projections in voxel space. 

(b) 

(c) 

(d) 

(a) 
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ability of our system) into the update procedure of our 

background subtraction model for each camera in order to 

achieve more robust human segmentations that are 

independent of high leveling tracking algorithms. Such 

tracking algorithms could operate on the extracted 

silhouettes and voxel objects at a later time, in a non-real-

time fashion. The steps of our approach are outlined below. 

A. Connected Component Identification 

The first step of our technique is to identify and label the 

individual connected components, i
jc , jCi 1 , 

Jj 1 , in the extracted silhouette images. Let Cj denote 

the number of connected components in silhouette image j, 

and let J denote the number of silhouette images (cameras). 

Given the number of connected components in each 

silhouette image, we can then compute the number of 3D 

objects, No, formed by the intersection of the projection of a 

single connected component from each of the silhouette 

images as: 




J

j
jo CN

1  
For each of the No voxel objects, some (if not many) of 

which may have an empty voxel space intersection, a set of 

features will be used to classify the voxel object as either 

human or non-human.  

B. Feature 1 – Connected Component Usage 

 The first feature, connected component usage (CCU) 

illustrated in Figure 2, is used to identify the percentage of 

each connected component associated with a 3D voxel 

object that forms the voxel space intersection for the object. 

Thus, each voxel space object will have a CCU value for 

each silhouette image. Let us denote the connected 

component from silhouette image j used in the construction 

of object k as ki
jc .  

The CCU value for object k, silhouette image j, is 

obtained by first back-projecting the 3D object, ok, into each 

camera view, evaluating the cardinality of the intersection of 

the back-projection, kjb , , and the original connected 

component, and, finally, normalizing by the cardinality of 

the original component as shown below: 
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For objects that are well-segmented in each camera view, 

the CCU values associated with the corresponding voxel 

object should be near 1.0. For objects that are not well-

segmented in each of the camera views, the CCU value from 

one view may be high, while the other lower (as per the 

example in Figure 2). For voxel objects that are the result of 

intersecting the segmentation of different real world objects 

from each silhouette image, the CCU values for all 

silhouette images should be low. 

C. Feature II – Position Corrected Volume 

 The second feature, position corrected volume (PCV) uses 

the view vector of each connected component associated 

with a voxel object to adjust the volume of the object based 

on its position with respect to the cameras.  

 Given the calibrated 3D view vector of each pixel from 

each camera, relative to the global coordinate system, the 

view vector of connected component i
j

c , denoted
i
jv  , is 

taken to be the average of the view vectors of each pixel in 

the connected component.  Assuming J cameras, the PCV 

for object k, is calculated as: 

 

)(* kkk ovolumePCV   
















































kk

kk

i
n

i
j

i
n

i
j

jn
Jnj

k

vv

vv
1max

,

 
 

The PCV is a correction to the raw voxel space volume 

based on the orthogonality of the view vectors of the 

connected components used to form the object. If the view 

Fig. 2. Illustration of the CCU feature. (a) Connected components from 

silhouette images. Person is well segmented in left silhouette image, 
while part of the legs are missing in the right silhouette image.  (b) 

Voxel space intersection for voxel object formed by projection of 

connected components. (c) Back-projection (red) of voxel object 
intersection overlaid on original connected components, with 

computed CCU values.  

(a) 

(b) 

(c) 

CCU = 0.83 CCU = 1.0 
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vectors are perfectly orthogonal then the volume of the 

object is left unchanged. However, as the view vectors 

become more parallel the volume is corrected (reduced) to 

counteract the effects of construction error, as detailed in 

[27]. This adjustment results in more stable volume 

measurements as objects move about the environment. 

Given more than two cameras, the PCV is based on the pair 

of cameras whose connected component view vectors are the 

closest to orthogonal. (We have used α = 0.3).  

D. Classification – Human vs. Non-human 

A set of heuristic rules is used to classify each voxel 

object as human or non-human, based on the image space 

and voxel space features described previously. This 

technique is not meant to completely solve the problem of 

identifying humans in multi-view environments, but to act as 

a filtering step in a silhouette extraction process that is 

independent of any high-level tracking or human motion 

modeling. Furthermore, we would like the system to classify 

voxel objects which consist of two connected humans, or 

humans in contact with small to medium sized objects as 

human for the purpose of segmentation. As a result, the rules 

are defined to err on the side of classifying objects as 

human, allowing a higher level of reasoning to later 

determine cases which are not clear.  

 

 

Rules for Voxel Object Classification 
 

for each voxel object, 1≤ k ≤ No 

Rule 

1: If PCVk < 4,000 in
3
 Then non-human 

2: If PCVk > 80,000 in
3
 Then non-human 

3: If 
  15.0min , 


jk

Jj
CCU  

Then non-human 

4: If 
  8.0max , 


jk

Jj
CCU  

Then non-human 

5: If 
  1.1max ,,

,





nkjk

jn
Jnj

CCUCCU  
Then non-human 

6: If !(R1 | R2 | R3 | R4 | R5) Then human 

     

 

Rule 1 acts to remove voxel objects which are too small to 

be human based on the object’s computed PCV. This takes 

care of small moving objects such as books, magazines, and 

cups. As it is based on the PCV of the voxel intersection, 

(assuming a reasonable segmentation) it will not be 

dependent on the position of the object with respect to the 

camera. In addition, rule 1 also handles empty voxel objects, 

which are often the result of attempting to intersect 

connected components that don’t correspond to the same 

real world object. Rule 2 acts to remove voxel objects which 

are too large to be human based on the computed PCV. This 

takes care of segmentations resulting from quick, large scene 

changes, such as lighting, and large moving objects. 

Rules 3, 4, and 5, in general, act to remove voxel objects 

that are not empty, but are the result of intersecting 

connected components from different real world objects. If 

an object is reasonably segmented in each camera view, 

even with significant (50%) occlusion in one view, one of 

the CCU values should be near 1.0 ( i.e., > 0.8), and the 

others, though lower, should not be near zero ( i.e., > 0.15).  

If any of the first five rules fire, then the voxel object is 

classified as non-human. If none of the first five rules fire, 

then the object is classified as human, as stated in rule 6. 

Lastly, after the initial classification step, an attempt is 

made to determine if any non-human voxel objects are 

actually detached parts of human voxel objects. This 

determination is based on position and distance from the 

human voxel object, and whether the non-human voxel 

object is formed using one of the connected components 

used to form the human voxel object. If it is determined that 

a non-human voxel object is a detached part of a human, 

then the connected components of the two objects for each 

silhouette image are combined, as well as the voxel space 

intersections. 

E. Background Model Updating 

The last step of the technique integrates the human vs. 

non-human classification into the update procedure of the 

background model for each camera. The base level of the 

update procedure uses frame-to-frame motion estimated with 

overlapped blocks. Specifically, any blocks which are 

determined to contain motion are prevented from updating. 

Next, for each silhouette image, connected components 

that are associated with a human classified object are treated 

as follows: first, the convex hull of the connected component 

in image space is computed; second, the convex hull is 

dilated using a 5x5 kernel; third, all of the pixels in the 

dilated convex hull are prevented from updating; thus, 

connected components associated with human classified 

voxel objects will persist indefinitely even if not moving. 

Pixels which are classified as background in the silhouette 

extraction step, and are not blocked from updating, are 

updated using a slow rate, δ ≈ 
 

        
 (where frames per 

second ≈ 5). Pixels, along with their neighbors, which 

belong to a connected component not associated with a 

human classified object, and are not prevented from 

updating, are updated using a faster rate, δ ≈ 
 

     
.  This 

faster update rate acts to quickly absorb these foreground 

segmentations into the background model. 

Finally, because connected components associated with 

human classified voxel objects will persist indefinitely, and 

because our classification method is not 100% accurate, 

there must a procedure for getting rid of segmentations due 

to incorrect classifications or they could eventually clutter 

the images. Although the previously described classification 

rules would eventually take care of such cases (when other 
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segmentations interact with the incorrect ones, or when 

lighting changes occur), we do include an override that is 

thrown if the percentage of foreground pixels is greater than 

a predetermined threshold. When this occurs, all of the 

pixels in the image are updated at the fast rate, except those 

in motion blocks. (We have used a threshold of 40%, 

although this should be adjusted based on the camera field of 

view and placement.) 

V. EXPERIMENTAL RESULTS 

We have included results of our algorithm on three data 

sequences (fps = 5), two of which were captured in an 

independent living facility for older adults and the third in a 

lab setting. Evaluation of the technique is difficult from two 

standpoints: 1) how to quantify the results without hand 

segmenting humans in the video frames, which is 

prohibitively time intensive; 2) determining what other 

algorithm(s) (and, thus, with what parameter settings) to 

compare it against. Ultimately, we have decided to limit the 

scope of the results presented here to qualitative evaluation, 

and to simply show our results against our baseline 

background subtraction with no update procedure. Future 

efforts will provide a more comprehensive analysis. 

A. Sequence 1 

The first sequence, captured in an independent living 

facility for older adults called TigerPlace, consists of two 

adults acting out a scripted scenario. Person one walks in 

and sits down (frame 355). Person two enters the room 

(frame 489), hugs person one, and sits down. As person two 

is sitting down, a relatively quick (although not 

instantaneous) lighting change occurs due to the sun through 

an outside glass door (frame 587). Subsequently, person one 

gets up to make tea for person two, hands person two the tea 

(frame 878), then sits back down. During this time, the 

lighting continues to fluctuate. Finally, they both exit the 

room with person one picking up a jacket (frame 1498). As 

the silhouette images from sequence 1 illustrate, our 

technique is able to update the effects of the lighting change, 

which greatly impacts the baseline system, while still 

segmenting the people, resulting in accurate silhouette 

images. However, when person one and person two are 

sitting in close proximity, one of the voxel space objects 

formed by the intersection of the non-corresponding 

connected components from each silhouette image is 

classified as human. Therefore, although the individual 

silhouette images are correct, three separate objects are 

shown in the voxel space representation during this time.   

B. Sequence 2 

The second sequence, also captured in TigerPlace, 

consists of two adults acting out a different scripted 

scenario. Person one enters the room and sits, and in the 

process places a jacket on a cabinet, and picks up a 

magazine from a table (frame 555). Person one then gets up 

to open the door for person two before sitting back down, 

moving the magazine in the process (frame 985). Person two 

proceeds to move about the room (cleaning), until person 

one gets up from the chair (moving it slightly), places the 

magazine in a trash can (frame 1282), puts the jacket back 

on (frame 1469), and exits the room (frame 1581). Person 

two soon follows. As the illustrations of sequence 2 show, 

our technique is able to update the moved objects into the 

background quickly, and handle a small change in lighting 

while segmenting the people. 

C. Sequence 3 

The third sequence, captured in a lab setting, consists of 

one adult, and contains a number of environmental changes 

to stress the system. Initially, person one enters and sits 

down on a couch (frame 150). Person one then gets up; 

proceeds to move two small objects, move one medium 

SEQUENCE 1 

Frame  - 355    Camera 1        Camera 2       Voxel Space 

Proposed 

Technique: 
  

 

Baseline: 

  
 

Frame - 489 

Proposed 

Technique: 
  

 

Baseline: 

  
 

Frame - 587 

Proposed 

Technique: 
  

 

Baseline: 

  
 

Frame - 878 

Proposed 

Technique: 
   

Baseline: 

  
 

Frame - 1498 

Proposed 

Technique: 
  

 

Baseline: 
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sized object, turn on a lamp, and move the couch slightly 

(frame 417). An overhead light is then turned off, person one 

walks towards the couch, the overhead light is turned back 

on, and person one sits down. While sitting, the overhead 

light is turned off for a short period of time (frame 527), and 

then back on. Person one then gets up, turns off the lamp 

(frame 581), moves two medium sized objects and one small 

object, and begins to exit the room (frame 686). As the 

illustrations of sequence 3 show, our technique is able to 

update the small and large moved objects into the 

background, and adapt well to the lighting changes due to 

the lamp and the overhead light, while still segmenting the 

person. However, movement of two medium sized objects 

does result in improper human segmentations. 

Such improper human segmentation issues can occur 

when medium sized objects are moved. If they are classified 

as human (either where they are moved to, or where they are 

moved from), they may persist in the silhouette images until 

removed by subsequent events.  

Finally, when a person is motion-less during a large 

lighting change, the person is updated into the background 

model, and their subsequent movement may result in their 

previous location being classified as human. In such cases, 

their previous location will persist in the foreground 

segmentation until a subsequent event eventually resolves 

the issue.  

Although these conditions do result in temporary, 

improper human segmentations, they should be easily 

manageable by a tracking algorithm operating on the 

extracted silhouettes and voxel objects in a higher-level 

SEQUENCE 2 

Frame  - 555   Camera 1      Camera 2       Voxel Space 

Proposed 

Technique: 
   

Baseline: 

   

Frame - 985 

Proposed 

Technique: 
   

Baseline: 

   

Frame - 1282 

Proposed 

Technique: 
   

Baseline: 

   

Frame - 1469 

Proposed 

Technique: 
   

Baseline: 

   

Frame - 1581 

Proposed 

Technique: 
   

Baseline: 

   

SEQUENCE 3 

Frame  - 150   Camera 1       Camera 2       Voxel Space 

Proposed 

Technique: 
   

Baseline: 

   

Frame - 417 

Proposed 

Technique: 
   

Baseline: 

   

Frame - 527 

Proposed 

Technique: 
   

Baseline: 

   

Frame - 581 

Proposed 

Technique: 
   

Baseline: 

   

Frame - 686 

Proposed 

Technique: 
   

Baseline: 
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reasoning component. 

VI. CONCLUSION 

In this paper, we presented a simple technique which 

fuses image and voxel features, from a calibrated, multi-

view environment into the background model update 

procedure used to acquire silhouette images for the purpose 

of improved human segmentation. The technique is 

independent of any high level tracking, and results have 

shown it to be quite good at reducing artifacts due to lighting 

and moving non-human objects; which are often present in 

background subtraction results from dynamic, uncontrolled 

environments.  

To improve the performance of the technique, future 

efforts will look to collect a set of training data, consisting of 

silhouette image components and voxel space intersections 

for both human and non-human objects in a variety of poses, 

settings, and occlusions, for the purpose of training a more 

robust classifier. Furthermore, the inclusion of additional 

features, such as distribution of mass, major orientation with 

respect to centroid height, etc., will be explored. 

The benefit of incorporating a single frame, image feature 

based people detection and localization algorithm into the 

segmentation process will also be explored. 
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