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Abstract— A methodology for mapping in-home gait speed 

(IGS), measured unobtrusively and continuously in the homes 

of older adults, to Timed-Up-and-Go (TUG) time is presented. 

A Kinect-based gait system was used to collect in-home gait 

data on 15 older adults over time periods of up to 16 months. 

Concurrently, the participants completed a monthly clinician 

administered fall risk assessment protocol that included TUG 

and habitual gait speed (HGS) tests. A theoretical analysis of 

expected performance is presented, and the performance of the 

IGS-based TUG estimates is compared against that of estimates 

based on HGS measured at the same time as the TUG. Results 

indicate that the IGS-based estimates are as accurate as the 

HGS-based estimates as compared to the observed TUG times. 

After filtering the TUG times to reduce noise, the IGS-based 

estimates are more accurate. The mapping of in-home sensor 

data to well studied domains facilitates clinical interpretation of 

the in-home data. 
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I. INTRODUCTION 

ESEARCH has shown that the parameters which describe 

locomotion are indispensible in the diagnosis of frailty 

and fall risk [1]. Additionally, studies have indicated that 

changes in gait parameters may be predictive of future falls 

and adverse events in older adults [2-6], and that scores on 

certain mobility tests are good indicators of fall risk [7-9]. 

Studies have also shown that interventions to prevent falls 

among seniors, such as household modifications and 

exercise routines, could significantly reduce falls and be 

highly cost effective [10]. Despite this, these gait parameters 

and mobility tests are generally assessed infrequently, if at 

all, through observation by a clinician with a stop watch or 

using expensive equipment in a physical performance lab. 

Furthermore, these sparse, infrequent evaluations may not be 

representative of a person’s true functional ability [11].  

In [12-14], an unobtrusive, continuous gait monitoring 

system based on the Microsoft Kinect sensor was developed 

and evaluated that could measure the gait of older adults, in 

their homes, during normal daily activity. However, the 

output of the system, measures of in-home gait speed, stride 

time, stride length, etc., is not easily interpretable, as such 

parameters have never before been available. Thus, either a 

large scale study to directly relate these in-home gait 

parameters to fall risk and/or health status is needed, or a 

methodology to relate the parameters to existing well studied 

and understood domains needs to be developed.  

For this work, the Kinect-based in-home gait system was 

deployed in the homes of 15 older adults for time periods of 

up to 16 months. While the systems were installed, the 

participants also completed monthly fall risk assessment 

protocols consisting of standard mobility tests, such as the 

Timed-Up-and-Go (TUG) [15], Habitual Gait Speed (HGS) 

[16], and Short Physical Performance Battery (SPPB) [17]. 

The TUG test has been widely studied and shown to be a 

good measure of functional ability as well as an indicator of 

fall risk in the elderly [8-9, 15]. As such, mapping of the in-

home gait data to this well understood domain would 

facilitate interpretation of the data by a clinician. 

This paper presents a methodology for and results from 

estimating TUG time from in-home gait data, specifically 

walking speed, collected by the Kinect-based systems. The 

purpose is not to measure TUG time directly, but to map the 

in-home gait data to a domain that clinicians understand; and 

to assess the accuracy of the mapping with regards to what 

could theoretically be expected. Although this paper focuses 

on mapping in-home gait speed to TUG time, the approach 

could be used with any data source, and any well studied 

domain. 

Section II of this paper discusses related work in the area 

of in-home gait and functional ability assessment. Section III 

contains a brief overview of the Kinect-based in-home gait 

system. Section IV describes the methodology used to map 

in-home walking speed to TUG time, including a theoretical 

analysis of expected performance for a system that was 

modeling the true TUG of the individuals. Section V 

contains the results of estimating TUG time from in-home 

gait speed and compares it to estimates made using HGS 

measured by a clinician at the same time as the TUG. 

Finally, a discussion of the results and their implications is 

given in Section VI. 

II.  RELATED WORK 

A number of researchers have looked at assessing 

mobility and/or measuring TUG using wearable sensors [8, 

18-21]. In [18], two sensor units, each with an accelerometer 
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and a gyroscope, were used to assess individuals while they 

performed the TUG test and a methodology was developed 

to identity each phase of the TUG. Good agreement was 

found to measurements made by therapists. In [8], patients 

were assessed using two kinematic sensors while performing 

the TUG test and significant discrimination was provided by 

29 out of 44 derived metrics between patients with and 

without a history of falls. Finally, in [19], researches used 

seven inertial sensors attached to the body to segment the 

TUG test and capture additional spatial and temporal 

metrics. These additional metrics were able to differentiate a 

group of patients in the early stages of Parkinson’s disease, 

whereas TUG time alone could not. 

 In [21], researchers developed an approach for 

characterizing the mobility of elderly subjects in 

unsupervised environments using an accelerometer and 

found good correlation between extracted signals and a 

clinical fall risk gold standard. However, the approach 

requires monitoring participants during a specific, directed 

routine of physical tasks, not normal everyday activity. 

Furthermore, as with other wearable technologies, improper 

device usage and/or placement, along with the inability of 

users to safely perform the required tasks in unsupervised 

settings were identified as clear limitations for long term 

monitoring. 

Although wearable systems are useful in supervised, 

clinical settings where there is a need to reliably, 

quantitatively assess a patient’s mobility, they are not 

practical for long term, continuous monitoring in the home. 

The need for users to be actively involved, changing or 

charging batteries for example, often leads to poor 

compliance over time. Studies have shown older adults to 

prefer ambient, non-wearable sensors [22] for in-home 

monitoring. 

In [23], researchers developed a technique to assess 

walking speed in home environments using an array of 

passive infrared (PIR) sensors mounted on the ceiling in a 

hallway or above a natural walking path. Using data from a 

one month period centered on a participant’s first annual 

physical evaluation, the researchers found statistically 

significant associations between in-home walking speed and 

various mobility assessments [11], including the motor 

section of the Unified Parkinson’s Disease Rating Scale, 

stopwatch timed gait speed, and the Tinetti balance scale. 

However, the PIR-based system does have limitations. For 

example, distinguishing between residents in multi-resident 

homes is problematic given the single available feature of 

walking speed, and finer grained information, such as stride 

time and stride length, may prove critical to a complete 

assessment of fall risk and functional mobility. 

Finally, in [24], researchers developed a methodology for 

assessing mobility in unsupervised environments by 

segmenting traditional assessments into basic movement 

components, and measuring those basic components during 

normal everyday activity. Specifically, a laser range finder 

integrated into a chair was used to measure the basic 

components of the TUG test: standing, walking, turning, and 

sitting. In a small field trial, good agreement was shown 

between TUG time measured using their aTUG apparatus 

and TUG time measured using a stopwatch on a set of six 

TUG tests. 

III. IN-HOME GAIT SYSTEM 

In [12], the Microsoft Kinect sensor was evaluated for the 

purpose of passive, in-home gait measurement in a lab 

setting. This evaluation consisted of developing algorithms 

for measuring multiple gait parameters from the Kinect 

depth imagery and comparing them to measurements 

obtained from a Vicon marker-based motion capture system. 

The results of this study showed good agreement between 

measurements from the Kinect and those from the Vicon, 

along with good reliability of the measurements from the 

Kinect.  

In [13, 14], Kinect-based systems using these algorithms 
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Fig. 1 (a) Kinect and computer (inside cabinet) as deployed in apartments. 
(b) Example depth images and extracted foreground during a walk in an 

apartment. (c) Three-dimensional model of person obtained at selected 

frames using extracted foreground. (d) Plot of correlation coefficient time 
series of normalized ground plane projections during walk (thin is raw, 

thick is filtered); used to identify when steps occur. Local maxima 

correspond to left steps, while local minima correspond to right steps. 
Algorithm details and parameter definitions can be found in [xx]. 

 



  

were deployed in the apartments of older adults in an 

independent living facility, and a methodology for modeling 

the gait of the residents and tracking changes over time was 

developed. A brief description of basic system operation and 

resident gait modeling follows. 

A. System Operation 

Fig. 1 shows the Kinect sensor as mounted in one of the 

apartments. The Kinect is placed on a small shelf a few 

inches below the ceiling (height 2.75 meters), above the 

front door. A computer is placed in a cabinet above the 

refrigerator. Foreground objects, represented as a set of 3D 

points, are identified from each frame using a dynamic 

background subtraction technique. Next, a tracking 

algorithm is used to track extracted 3D objects across 

multiple frames. Walks are identified from the path histories 

of the tracked objects. A set of criteria including path 

straightness, speed, duration, and distance are used to 

identify suitable walks. This is done online in real-time. 

Current minimum requirements for a suitable walk are a 

relatively straight path of at least 1.2 meters, with a 

continuous minimum speed of 12.7 centimeters per second.  

Walking speed and height are extracted for every 

identified walk as they are computed using the centroid and 

maximum value in the vertical direction from each frame, 

respectively. However, due to issues such as occlusion of the 

legs and bad segmentation, stride parameters are only 

extracted for walks for which at least five steps could be 

identified which met three screening criteria used to 

eliminate invalid sequences. The reader is referred to [12-14] 

for a more detailed explanation of the algorithms. 

 

B. Resident Modeling and Gait Assessment 

The output of the Kinect-based gait systems is a dataset in 

which each entry corresponds to a walk that occurred in the 

apartment. As the systems are deployed in real-world 

environments, this dataset will include walks from all 

residents of the apartment, as well as any visitors. Thus, it is 

necessary to identifying which walks are from each specific 

resident before the gait of the resident can be assessed. 

In [14], an approach based on a fitting a Gaussian Mixture 

Model (GMM), λ = {ρr, μr, Σr}, r = 1, …, K,  with the 

number of distributions, K, equal to the number of residents 

in the apartment to the dataset was developed. This approach 

is based on the assumption that each resident will create a 

cluster, or mode, in the dataset representing their typical, in-

home gait. Generally, walks from a two week to three month 

period are used to fit the GMM, depending on how many 

walks are identified in an apartment, and how well separated 

the modes of the residents are in the dataset.  

The resulting distribution, or model, of each resident is 

then used to determine which walks are from that resident, 

over a given time period, typically three to fourteen days 

depending on what information is to be obtained (long term 

trends vs. short term fluctuations). By applying a sliding 

window, with a step size of one day, changes in the gait 

parameters of a resident can be tracked over time. 

Fig. 2 illustrates this approach for an apartment with a 

single resident. This resident was admitted to the hospital 

needing femur surgery on Sep. 3, 2011, (before monitoring 

was active) and returned to her apartment after rehab on Oct. 

25, 2011. Upon returning to her apartment, the resident 

continued intensive physical therapy while using an assistive 

walking device for a short period of time, before eventually 

making a full recovery. This period of recovery is captured 

in the gait parameter data as increasing walking speed and 

decreasing stride time.  

IV. METHODOLOGY 

A. Monthly Fall Risk Assessment Protocol 

Timed-Up-and-Go (TUG) and Habitual Gait Speed (HGS) 

tests were administered monthly, when possible, to each of 

the participants included in the study, as part of a fall risk 

assessment protocol that also included other standard fall 

risk assessment instruments such as the Short Physical 

Performance Battery (SPPB). The TUG and HGS tests were 

conducted using a walking path of 3 meters, and the reported 

HGS is an average of two walks. The participants performed 

the tests unassisted and could decide whether or not use an 

assistive walking device if they had one. 

Issues of participant unavailability and/or participants 

 

 
 

 

Fig. 2 Illustration of sliding window approach used to generate trends in 

gait parameters for an apartment. Top: Change in resident model over six 

month time period. Plots show the current model estimate (in 2D) and two 
weeks of data from the specified time period. Bottom: Parameter trend 

estimates over six month period. Error bars extend from the lower quartile 

to upper quartile. A two month window was used for the model estimation 
step, and a two week window was used for the parameter estimation step.  

 



  

being physically unable to complete the assessments 

prevented collection of some tests for some residents. This 

difficulty in collecting data on even a monthly basis further 

illustrates the need for passive, continuous assessment. 

B. TUG Test-Retest Variability 

 A number of studies have investigated the test-retest 

reliability of the Timed-Up-and-Go (TUG) test among 

various older adult populations and found a high level of 

intra-individual variation between sessions when the 

sessions are days or weeks apart [25, 26]; with variation 

increasing as TUG time increases. This variation depends, of 

course, on a number of factors including the individual being 

measured, the individual administering the measurements, 

and the inherent variability of the test itself. As such, 

although the TUG has been shown to be good for detecting 

changes or differences at the population level and useful as a 

screening tool for assessing fall risk [9], its usefulness for 

detecting changes in an individual from one session to 

another when measurements are taken days or weeks apart is 

limited; as even large changes may simply reflect normal 

variation, or noise, in the test itself.  

In [26], three TUG tests were administered on different 

days (at approximately the same time of day) to 78 

participants within a period of five to seven days. Using this 

data, the authors calculated 95 percent confidence bounds 

for an observed TUG measurement based on the expected, 

true TUG of an individual (taken as the mean of the tests). 

These bounds are shown in the graph at the top of Fig. 3. 

Although the population is described as dependent in the 

activities of daily living (ADL), whereas the population in 

this work was generally not, the observed TUG times more 

closely resemble those of the population in this work than 

TUG times from studies that used populations described 

simply as community dwelling older adults. Thus, although 

the time between assessments was significantly shorter than 

one month, the TUG variability observed is a reasonable 

basis from which to assess the data in this work. (Although 

the study in [26] was focused on determining the impact of 

cognitive state on TUG reliability, and so included a set of 

cognitively impaired individuals, it ultimately concluded 

there was no impact of cognitive state on TUG reliability.) 

Given the high level of intra-individual variation in TUG 

times between sessions, determining the theoretical expected 

performance of a system that estimates TUG is vital to 

correctly evaluating the result. Based on the top graph in 

Fig. 3, a probability distribution of observed TUG (TUGO) 

as a function of true TUG (TUGA), can be approximated 

(with a slight bias)  by the following normal distribution, 

shown in the bottom graph of Fig. 3: 

 

                         
   

 

where the mean is simply the true TUGA, and the standard 

deviation is equal to 15.57 percent of TUGA. Given a 

probability distribution of TUGO, it is possible to estimate 

the expected root mean square error (RMSE) of a set of 

observed TUGO,i,        , times from M individuals 

compared to the true TUGA,i of the individuals. 

First, expected RMSE, RMSEE, of observed TUGO,i as 

compared to true TUGA,i can be written as: 

 

                         
 
   

 

 
   

 

 

 

  
 

 
               

 

 

 

 

Next, the expected value of               
  can be written 

as: 

 

                
 
                 

   

                

               
                

 
  

               
 
            

 

Finally, by substitution, RMSEE can be written in terms of 

TUGO,i as: 

 

       
 

 
 

                
 
 

           
 

 

 

 
 
Fig. 3. Top: Estimated 95 percent confidence bounds for an observed TUG 

time given the true TUG time of an individual, as reported in [26]. Bottom: 

Illustration of the distribution of observed TUG time as a function of actual 
TUG time for two cases: TUGA = 13 seconds and TUGA = 50 seconds. 



  

 

  
 

 
 

              
 

           
 

 

 

Thus, if a system that generates estimates of TUG time, 

TUGE,i, were actually modeling the true TUGA,i of the 

individuals, then (given a sufficiently large dataset) the 

RMSE of the observed TUGO,i as compared to the estimated 

TUGE,i would equal the RMSEE computed above. If, 

however, the RMSE were significantly less than RMSEE, it 

would imply that the system was modeling the observed 

TUGO,i, and not the true TUGA,i; a possible indication, in the 

case of a supervised model, of overfitting the training data. 

Finally, if the RMSE was significantly more than RMSEE, it 

would imply that there was still room to improve the 

estimates such that they better modeled the true TUGA,i of 

the individuals. 

Due to the fact that the computed RMSEE depends on the 

distribution of TUGO,i, which is assumed based on data from 

another study with a slightly different population, an 

absolute comparison against this value is interesting and 

beneficial as an approximate reference point, but should be 

viewed cautiously. However, by filtering the observed 

TUGO,i, another useful assessment of whether a system is 

modeling true TUGA,i can be made. 

Based on standard techniques from signal averaging, the 

variance,    
 , of a measurement, ST, obtained by combining 

N measurements each subject to random noise with mean 

zero and standard deviation σ, using a filter,   
         ,       

   ,  is given by: 

 

   
        

 
 

   
  

 

This assumes that the signal being measured is stationary 

over the measurement window and that the measurement 

noise is independently distributed. Barring a catastrophic 

event such as a fall, functional ability (and, thus, true TUG) 

should change slowly over time; while the measurement 

noise from one session to another should not, in general, be 

related.  

 Using a Gaussian filter with N = 5 and σ = 1 (as an 

example), the variance of the individual observed TUGO,i 

measurements can be reduced as: 

 

                                            

   
        

 
 

   
          

 

Substituting this into the previous derivation yields the 

following approximation for the expected RMSE, RMSEF, of 

the filtered TUG times, TUGF,i, as compared to the true 

TUGA,i: 

 

       
 

 
 

                     
 

                    
 

 

                 

 

 Thus, if a system were modeling the true TUGA,i, the 

RMSE of the estimated TUGE,i compared to the filtered 

TUGF,i should be significantly less than the RMSE of the 

estimated TUGE,i compared to the observed TUGO,I. 

However, if the RMSE against the filtered TUGF,i was not 

significantly less than RMSEE this would imply the system is 

not modeling the true TUGA,i. 

 In summary, the calculated RMSEE for a set of observed 

TUGO,i against the actual TUGA,i of the individuals gives a 

theoretical basis for interpreting the result of a system that 

attempts to estimate TUG for those individuals. 

Additionally, comparing the RMSE of the estimated TUGE,i 

against the observed TUGO,i to the RMSE against the filtered 

TUGF,i gives an additionally basis for assessing whether the 

system is estimating the true TUGA,i, or simply reflecting the 

observed TUGO,i.  

 

C. Mapping Gait Speed to TUG Time 

 A simple non-linear neural network model, shown in 

Fig. 4, was created to map a single dimensional input, gait 

speed, to a single dimensional output, TUG time. The model 

uses a hyperbolic tangent activation function in the single 

hidden neuron, and a linear activation function in the single 

output neuron. The model has a total of four trainable 

parameters. The Nelder-Mead Simplex Search method was 

used to train the model, given randomly initialized weights. 

Each training run included 50 random initializations, with 

the best of the 50 trained models being selected. The cost 

function was defined as the average square error on the 

training data. 

The simplicity of the model, with only four trainable 

parameters, significantly reduces the chance of overfitting, 

while increasing the chance of good generalization, even 

with small datasets. At the same time, it maintains the 

flexibility needed to closely approximate the non-linear 

mapping of in-home gait speed to TUG time, as shown in 

Section V. 

 

 

 

 

Fig. 4. Simple non-linear neural network model used to map gait speed to 
TUG time. The model uses a hyperbolic tangent activation function in the 

hidden neuron, and a linear activation function in the output neuron. The 

model has a total of four trainable parameters. 
 

 



  

V. RESULTS 

The Kinect-based gait system was deployed for time 

periods ranging from 2 to 16 months in 14 apartments in an 

independent living facility for older adults. Three of the 

apartments had two residents, yielding a total of 17 study 

participants. Seven were male and ten were female, ages 

ranged from 68 to 98 years. 

As part of a monthly fall risk assessment protocol, Timed-

Up-and-Go (TUG) and Habitual Gait Speed (HGS) tests 

were administered, when possible, to each resident. This 

resulted in a total of 154 TUG and HGS measurement pairs. 

Due to the residents of one apartment being very similar in 

all physical characteristics measured by the Kinect-based 

gait system, combined with relatively few walks being 

identified in their apartment, their data had to be removed, as 

separate modes, and thus separate gait estimates, could not 

be identified for each resident. Consequently, the final 

dataset contained 122 TUG and HGS measurement pairs 

from 15 individuals. The distributions (mean and standard 

deviation) of the TUG and HGS measurements, respectively, 

were 19.5±7.8 sec, and 65.0±18.3 cm/sec. 

The in-home gait speed (IGS) of each of the 15 residents 

was estimated from the Kinect-based gait systems using two 

weeks of data immediately preceding the date each fall risk 

assessment protocol was administered (including the day of). 

The resident models used to identify walks from the 

residents were based on two months of data immediately 

proceeding the date each fall risk assessment protocol was 

administered. The distribution of the IGS measurements was 

48.7±12.3 cm/sec. (Although IGS measurements are only 

shown for the days when the fall risk assessments protocols 

were administered, the Kinect-based gait systems generate 

new estimates daily.) 

 

A. Initial (Linear) Observation 

Fig. 5 (a) shows observed TUG (TUGO) recorded from the 

residents as a function of both IGS and HGS. Pearson 

correlations indicate that the relationship of HGS to TUGO is 

more linear than that of IGS to TUGO. Fig. 5 (b) shows 

filtered TUG (TUGF) from the residents as a function of both 

IGS and HGS, where a Gaussian filter (N=5, σ=1, replicated 

boundaries) has been applied to each resident’s TUGO. 

Pearson correlations indicate that the relationship of IGS to 

TUGF is more linear than to TUGO; while the relationship of 

HGS to TUGF is essentially the same as to TUGO. 

These results suggest, based on the analysis in Section IV, 

there is a better linear relationship between IGS and the true 

TUG (TUGA) of the residents, than between IGS and 

observed TUGO. However, the similarity of the linear 

relationships of HGS to TUGF and TUGO suggest that the 

relationship of HGS to TUGA is not any stronger than to 

TUGO. 

 

B. Estimating TUG from Gait Speed 

The simple non-linear network model described in Section 

IV was trained to map IGS or HGS to observed (not filtered) 

TUGO. Specifically, leave-one-out cross-validation 

(LOOCV) was used as follows: 

 

1) All the data from an individual was removed  

2) A model was trained using the remaining data 

3)  The trained model was evaluated on the left out data  

 

For each model run, the training data was normalized by 

subtracting the mean and dividing by the standard deviation. 

This normalization was then applied to the removed data. As 

the data set contained 15 individuals, 15 separate models 

were trained to map IGS to TUGO, and 15 separate models 

were trained to map HGS to TUGO. 

Fig. 6 shows the mapping of IGS or HGS to TUG that was 

learned by each model, overlaid on the TUGO and TUGF 

data. Fig. 7 shows TUGO, TUGF, IGS estimated TUG 

(TUGIGS), and HGS estimated TUG (TUGHGS) for each 

individual. Table I contains measures of RMSE, normal 

error distribution, and Pearson correlation between the 

estimated values (TUGIGS and TUGHGS) and the ground truth 

values (TUGO and TUGF). Additionally, the RMSEE and 

RMSEF (described in Section IV) values computed for the 

data set are included in Table I for comparison purposes. 

The small variation between model runs shown in Fig. 6 

indicates no significant overfitting of the training data during 

LOOCV. In the case of both HGS and IGS, the relationship 

to TUG is clearly non-linear, with the relationship of IGS to 

TUG being more so than HGS to TUG. However, the simple 

non-linear model appears capable of closely approximating 

the relationship in both cases. 

(a)   

 

(b)  

 

 

 Fig. 5. Plots of observed, (a), and filtered, (b), Timed-Up-and-Go time 

(TUGO and TUGF, respectively) as a function of in-home gait speed (IGS) 
measured using the Kinect-based gait system and habitual gait speed (HGS) 

measured during the same fall risk assessment protocols as the TUG. 

Pearson correlations are used to assess the quality of the linear fit.  
 



  

 

As compared against the theoretical performance level, 

RMSEE, it appears neither the TUGIGS nor TUGHGS estimates 

are perfectly modeling the true TUG of the individuals, as 

the RMSE calculated against the observed TUGO is 4.38 and 

4.20 seconds, respectively. However, the fact that TUGIGS 

and TUGHGS are, essentially, equal in their ability to estimate 

observed TUGO (in terms of RMSE, error distribution, and 

Pearson correlation), suggests that unobtrusive, continuously 

measured IGS contains as much information about the TUG 

time an individual would be expected to receive if 

administered a TUG test as an HGS test would that was 

administered during the same session as the TUG test. This 

is compelling evidence that IGS captures key information 

about the functional ability of an individual. 

In the case of TUGHGS, RMSE measured against TUGO 

and TUGF is basically the same, 4.20 and 4.13 seconds, 

respectively. In the case of TUGIGS, however, RMSE 

measured against TUGF is significantly less than that 

measured against TUGO, 3.05 vs. 4.38 seconds, respectively. 

This is compelling evidence that IGS is a better measure of 

an individual’s true functional ability than HGS. Of course, 

this is somewhat expected, as IGS is based on tens or 

hundreds of walks captured during normal daily activity, 

whereas HGS is based on only two walks captured during an 

explicit performance evaluation. 

VI. DISCUSSION 

Estimates of observed TUG time based on unobtrusive, 

continuously measured IGS were shown to be as accurate as 

estimates based on HGS measured during the same session 

 
 

 

 
 

 

Fig. 6. Mappings of HGS, top, and IGS, bottom, to TUG time learned by 
each of the models trained during leave-one-out cross validation (LOOCV). 

Each model is represented by a black dotted line. Observed (TUGO), 

filtered (TUGF), and estimated (TUGHGS/TUGIGS) TUG are overlaid. 

 

 

 
Fig. 7. Plots of observed (TUGO), filtered (TUGF), IGS estimated (TUGIGS), and HGS estimated (TUGHGS) TUG time for the 15 individuals included in the 

study. Each plot corresponds to a separate individual. TUGIGS and TUGHGS are estimates from leave-one-out cross-validation. 



  

as the TUG. In addition, the IGS-based TUG estimates were 

shown to better model the actual TUG, and, thus, the true 

functional ability level, of the individuals (based on filtering 

their observed TUG) than the HGS-based estimates. Such a 

result is somewhat expected, as IGS is based on tens or 

hundreds of walks captured during normal daily activity, 

whereas HGS is based on only two walks assessed during 

explicit evaluation on the day of the TUG. It also implies 

that key information about an individual’s functional ability, 

which has typically been assessed in clinical settings, can 

now be obtained on a continuous basis, in the home, during 

normal daily activity. 

A theoretical analysis of TUG data from another study 

indicates there is likely room to improve the IGS-based TUG 

estimates. This improvement could possibly be achieved by 

incorporating additional parameters measured by the in-

home gait system. However, the small size of the available 

dataset makes this problematic, as overfitting becomes a 

major issue as the model complexity increases. Techniques 

such as regularization could help, but a larger dataset is 

likely needed to truly evaluate the potential of the data 

captured by the Kinect-based in-home gait systems. 

Future work will look to map the in-home gait data to the 

remaining traditional mobility assessments, such as the 

SPPB, that are included in the monthly protocols. The goal 

is to automatically generate, on a daily basis, the same fall 

risk report that is now collected on a monthly basis by a 

clinician, and, perhaps, have the report better reflect the true 

functional ability of the individual. 
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TABLE I 
ESTIMATED TUG VS. GROUND TRUTH 

 

N=122   
15 unique individuals w/ leave-one-out cross validation 

 

RMSEE for dataset:  3.24 
RMSEF for dataset:  1.75 

HGS ESTIMATED TUG (TUGHGS) 

Ground Truth RMSE (sec) Error Dis. (sec) Pearson Corr. 

Observed TUG (TUGO) 4.20 0.03±4.22 0.84 (p<0.001) 

Filtered TUG (TUGF) 4.13 0.05±4.15 0.82 (p<0.001) 

 
IGS ESTIMATED TUG (TUGIGS) 

Ground Truth RMSE (sec) Error Dis. (sec) Pearson Corr. 

Observed TUG (TUGO) 4.38 0.24±4.40 0.83 (p<0.001) 

Filtered TUG (TUGF) 3.05 0.26±3.05 0.91 (p<0.001) 

    


