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Abstract—A  hydraulic  bed  sensor  has  been  developed  to 
non-invasively measure heartbeat during sleep.  The motivation 
for  this  work is  to  enable early  detection of  physiological  and 
behavioral change, thereby allowing effective interventions prior 
to  an  acute  event.   The  transducer  configuration  and  signal 
processing  strategies  have  progressed  to  provide  a  low-cost, 
effective solution to eldercare monitoring needs.  This sensor is 
now being deployed into the homes  of  elders in  two locations, 
integrating  into  existing  ambient  sensor  networks  to  generate 
clinician  alerts  and  provide  an  improved  quality  of  care. 
Challenges and opportunities remain, and this paper reports on 
the current progress and development of the system.
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I.  INTRODUCTION

Demand  for  a  low-cost,  robust  instrument  for  capturing 
physiological  parameters  during  sleep  is  high  and  growing. 
Eldercare  monitoring,  in  the  home,  is  perhaps  the  most 
prominent venue for this technology.  Research has shown that 
long-term  monitoring  of  elders  in  the  home  may  lead  to 
potential  interventions  that  will  contribute  to  maintaining 
health, quality-of-life, and independence [1].  Deploying sensor 
networks  that  can  capture  data  from  the  environment  is  a 
leading  approach  toward  implementing  this  strategy,  but  an 
essential  element  to  widespread  adoption  of  sensors  in  the 
home is a requirement that the sensors not affect the comfort or 
lifestyle of the person being monitored.  Bed sensors hold great 
promise  as  a  key  component  of  these  sensor  networks,  and 
sensors  employing  ballistocardiography  are  emerging  as  a 
favored option for capturing desired physiological data [2].

Ballistocardiography is perfectly suited to this purpose.  As 
the ballistocardiogram (BCG) signal  results  from the natural 
forces associated with the ejection of blood from the heart at 
each contraction, there is no special activity or protocol for a 
subject to perform.  Additionally, this signal is readily (in fact, 
most readily) captured when the body is at rest.  The seminal 
research in this area was completed by Starr [3], but advances 
in technology now allow development of  innovative devices 
that are less expensive, easier to deploy, and more sensitive [4].

The hydraulic bed sensor developed by the author [5] is one 
such device.  This device is positioned beneath the mattress to 
provide sensing without any effect on subject comfort; in fact, 
the subject  cannot  even notice the device  is  deployed.   The 
Center for Eldercare and Rehabilitation Technology (CERT) at 
the University of Missouri has continued development of the 
device to a multi-transducer arrangement [6] (see Fig. 1).  This 
new arrangement allows for more reliable capture of the BCG 
signal,  as  the  transmission  of  forces  from  the  body  to  the 
transducer depend somewhat  on position of the body on the 
mattress,  and  on  the  orientation  of  the  body relative  to  the 
transducer  below.   Through  analysis  and  fusion  of  the  four 
transducer signals, it is possible to select both the transducer 
providing the best signal-to-noise ratio (SNR) and the location 
of the body on the mattress.

Based  upon  the  success  and  cost-effectiveness  of  this 
sensor arrangement, CERT has now deployed the sensor into 
the  homes  of  seniors  in  two  aging-in-place  communities: 
TigerPlace,  in  Columbia,  MO,  and  Western  Home 
Communities,  in  Cedar  Falls,  IA.   In  this  paper,  we  report 
initial findings while we continue to collect data from our study 
population.

 
Figure 1.  Hydraulic bed sensor multi-transducer configuration.
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II. SYSTEM ARCHITECTURE AND ENVIRONMENTAL SETUP

Over the past decade, CERT has deployed sensor networks 
and collected data from 65 homes of seniors in two locations. 
These  sensor  networks  include  motion  sensors,  bed  sensors, 
gait  analysis systems,  and other devices in varying stages of 
development  (e.g.,  fall  detectors).   The  basic  architecture  is 
outlined  in  Fig.  2.   Various  sensing  modalities  are  used  to 
collect  data  via  a  logger  (dedicated  PC)  discreetly  placed 
within each  residence.   The local  data  logger  connects  to  a 
central  server,  which  serves  as  a  repository  for  all  of  the 
collected data from all of the monitored population.  A number 
of  algorithms  are  run  on  this  collected  data,  looking  for 
abnormalities  or  other  patterns  that  may  trigger  alerts  to 
caregivers, potentially prompting a visit or other attention to a 
resident.  Collected data is available to healthcare providers via 
a convenient web interface, allowing review in response to an 
alert or other reason for inquiry.

III. ALGORITHM SELECTION AND OPPORTUNITIES

The  CERT  team  has  developed  and  tested  a  set  of 
algorithms  for  processing  the  hydraulic  bed  sensor  BCG 
signals  that  each  have  particular  strengths,  and  research  is 
underway to determine how best to fuse the results from the 
separate  algorithms,  perhaps  even  applying  different 
algorithms  to  each  of  the  concurrently  collected  transducer 
signals to achieve the most accurate and robust result.  Three 
algorithms  currently  being  used  or  in  development  are 
described below.

A. Windowed Peak-to-Peak Deviation Algorithm
The Windowed Peak-to-Peak Deviation (WPPD) algorithm, 

first described in [5], then improved and clarified in [7], may 
be  compared  to  detecting  the  amplitude  modulation  of  the 
signal  acquired through the hydraulic  signal.   This approach 
does not rely upon an (improper) assumption of stationarity in 
the BCG signal.  Additionally, it is reasonably robust to noise 
caused by the integrated piezoresistive pressure sensor as well 
as the system through which the BCG is transmitted (i.e., small 

body  movements,  oscillation  of  the  mattress,  environmental 
vibration).  The method suffers two primary drawbacks:  1) the 
exact  time-location  of  each  heartbeat  is  skewed,  making 
estimates  of  beat-to-beat  intervals  less  accurate,  and 
2) optimizing the method requires some tuning of parameters, 
and  while  automatic  adaptation  of  parameter  to  a  particular 
subject is likely possible, this problem is not yet solved.

B. Clustering Approach to Heartbeat Detection
A clustering approach to heartbeat detection was developed 

in [6], based on prior work by Brueser [8, 9].  This method 
attempts  to  detect  the  J-peak  of  each  heartbeat  in  the  BCG 
waveform,  based  upon  features  derived  from the  waveform 
itself.  An advantage of this approach is that time-locations of 
reported  heartbeats  are  quite  accurate.   Like  the  WPPD 
algorithm, this approach is also not reliant upon a stationary 
signal.   There  appears  to  be  some  difficulty,  though,  in 
detecting false J-peaks or missing heartbeats for some subjects. 
Work is continuing to refine this method and employ additional 
features and constraints to yield more reliable results across a 
spectrum of subjects.

C. Hilbert Transform Algorithm
Su [10] has reported improved heart rate detection from the 

BCG signal over the methods described above.  This approach 
uses the Hilbert transform to extract pulse envelopes from the 
filtered and windowed BCG signal, followed by an fast Fourier 
transform  (FFT)  to  extract  frequency  content,  yielding  the 
pulse rate of the signal.  Indeed, results are impressive when 
the BCG signal is relatively stationary, but this also represents 
the primary limitation of this approach.  While heartbeats can 
be, and often are, relatively stationary for long periods of time, 
capturing heart rate and heart rate variability (including beat-to-
beat  intervals)  is  equally  if  not  more  important  when  the 
heartbeats are not uniform in time, or when heart rate changes 
quickly.

Figure 2.  System architecture for deployed sensor networks.



D. Algorithm Opportunities
A number of opportunities and choices exist with regard to 

the above described algorithms.  It should be noted that each of 
these  algorithms have  room for  continued  development,  and 
thus none of them should be discounted out-of-hand.  Each of 
the algorithms have been shown to perform very well in certain 
circumstances,  and those strengths  can be leveraged through 

parallel deployment of the algorithms and fusion of the results. 
Fig. 3 gives one example where the WPPD algorithm performs 
better than the clustering algorithm; Fig. 4 gives an example 
where all three algorithms perform competitively.  This gives 
motivation  for  the  conceptual  fusion  of  the  algorithms 
presented in Fig. 5.  We do not, however, rule out other fusion 
approaches, such as crisp selection based on an expert decision 
system, or selection based upon a fuzzy rule set.

Figure 3.  Example of the WPPD algorithm performing better than the clustering algorithm.  At top, the original (time domain) signal;  
middle, the K-means clustering result; and bottom, the WPPD result.  The circles above the signals indicate where heartbeats were detected. 
The y-axis represents amplitude (volts), but due to algorithm processing the scale of each graph cannot be directly compared.

Figure 4.  Results of all three algorithms performing on a given signal.  The original signal is divided into 15-second segments for algorithm 
processing, and the results are reported in beats per minute.  Selected segments are highlighted to show exact heart rates reported by each 
algorithm at three separate times; X represents the (15-second) segment number from the signal shown, Y represents the reported heart rate  
in beats per minute.
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Metrics to evaluate the confidence of the detection of a 
particular  heartbeat  are  under  development.   One  such 
approach  is  to  evaluate  the  consistency  of  the  inter-beat 
distances detected over a particular analysis segment (e.g., 15-
second window).  Generally speaking, we expect that inter-beat 
distances, and thus heart rate, will remain relatively constant. 
Working  under  this  assumption,  if  we  detect  a  very  high 
variance in the inter-beat distances, our confidence of correct 
identification  of  individual  heartbeats  is  lower.   This 
confidence may contribute to a choice of particular algorithm 
or algorithm parameters, and may also be used (as suggested in 
the next  section) to  select  the best  transducer  from the four 
elements comprising the bed sensor.

IV. TRANSDUCER SELECTION AND SIGNAL FUSION

The  transducer  configuration  provides  a  plethora  of 
options  for  signal  analysis  (for  one  example,  see  Fig.  5). 
Research is underway to determine how best to fuse the results 
from the separate algorithms, perhaps even applying different 
algorithms  to  each  of  the  concurrently  collected  transducer 
signals to achieve the most accurate and robust result.

A. Transducer Selection
As with algorithm selection, transducer selection provides a 

number of choices.  At present, we employ some strategies to 
select the “best” transducer.  A very straightforward approach 

is to examine the DC bias present on each of the transducer 
signals and select the transducer with the highest DC bias.  This 
approach makes the assumption that:  a) the transducer with the 
highest DC bias will be the one over which the body is most 
directly positioned, and  b) the transducer directly beneath the 
body will generally provide the best signal.  We have found, 
however, this this assumption does not consistently hold, and is 
also  susceptible  to  variations  in  the  manufacture  of  the 
transducer elements.  An improved approach, applicable to the 
Hilbert  transform  algorithm,  is  to  analyze  the  four  parallel 
signals in the frequency domain and select the signal with the 
most prominent peak; this implies the “clearest” signal to the 
algorithm.  Yet another approach is to examine the inter-beat 
distances that are reported from the algorithm for each of the 
transducer signals.  Using a 3-class K-means clustering of the 
reported inter-beat distances, then examining the percentage of 
heartbeats  assigned  to  the  largest  cluster,  we  are  able  to 
calculate a confidence for each of the four transducers.  The 
rationale for this approach is that the inter-beat distance will 
tend to remain relatively constant, thus transducer signals with 
a lower SNR will yield more varied (and error-prone) reported 
inter-beat distances.

Figure 5.  Block diagram for processing BCG signal from hydraulic bed sensor.  This represents one of many possible algorithm fusion options.



Figure 6.  Sample output displays for clinician use, from actual data.  The top figure shows the maximum, average, and minimum heart rates 
detected by day over a selected date range for a particular subject; the middle figure shows the maximum, average, and minimum heart rates  
detected by hour within a selected day; the bottom figure shows the specific heart rate calculated per 15-second segment within a selected  
hour.  Gaps in the graphs represent times when a pulse rate was not computed, likely because the subject was not in bed.



B. Signal Fusion
An  alternative  to  signal  selection  is  to  utilize  the 

redundancy across  transducers  to  ultimately provide  a  fused 
signal with a higher SNR that any of the individual transducers. 
Some useful, correlating data may be merged between multiple 
transducers, potentially increasing the SNR.  Another possible 
outcome of signal fusion is to give a more reliable confidence 
of  algorithm  results  by  running  the  algorithms  on  multiple 
signals in parallel, perhaps including a fused signal as well.  A 
further benefit of this approach is to detect possible conditions 
that may indicate a hardware failure or degraded performance 
from one  of  the  four  transducers.   In  fact,  this  has  already 
yielded diagnostic information regarding a faulty transducer in 
our current sensor deployments.

V. DISPLAYING THE RESULTS

As we collect  more  data,  and  increasingly  complex  data 
(including multiple, possibly redundant, signals containing the 
same  physiological  information),  we  must  develop  effective 
ways  to  present  the data in  a  manner  that  is  both clinically 
relevant  and  useful.   In  researching  and  developing  the 
technology that is capable of providing better and more reliable 
information, it is imperative that consideration be given to the 
design of  the user  interface.   CERT exemplifies  the best  of 
interdisciplinary research  teams,  as  CERT includes not  only 
engineers,  but  also  clinicians  and  other  direct  users  of  the 
technology.   Through regular  and effective consultation with 
clinicians on our team, an interface is under development that 
meets the following goals:

1.  Display average heart rate, restlessness, and respiration 
over several levels of time (average by day, average by 
hour,  “raw”  calculation  per  15-second  window)  in  a 
clinically meaningful way.

2.  Display accurate time in bed levels using the sensor's 
determination of bed occupancy.

3.  Display enough information to understand which data 
being  collected  is  meaningful  in  order  to  both 
understand  the  results  and  to  be  able  to  improve  on 
future displays, and to do this without overloading the 
user with too much information.

Fig. 6 provides an example of the interactive nature of the 
prototype web interface.  The top image displays heart rate for 
a subject over a nine-day period, showing maximum, average, 
and minimum values for each day in the specified range.  The 
user may then select a data point on a particular day to zoom 
into  an  hour-by-hour  graph  for  the  same  subject  (middle 
image).  The user can zoom-in even further by selecting a data 
point,  at  which  time  a  graph  is  displayed  in  a  line  chart 
showing the pulse rate  calculated  at  each 15-second interval 
during the hour of interest (bottom image).

VI. MOVING FORWARD

As mentioned in the introduction, CERT has deployed the 
current hydraulic bed sensor (4-transducer configuration) into 
homes of elders at TigerPlace in Columbia, MO, as well as in 
Western Home Communities in Cedar Falls, IA.  These sensors 
are  being  configured  to  merge  seamlessly  with  our  sensor 
networks,  using  the  same  infrastructure  to  transmit  data  to 
CERT loggers and servers for generating clinician alerts and 
enabling trend analysis [1].  In this manner, CERT is moving 
ever closer to closing the monitoring loop; that is, developing 
the technology that is able to detect the changes in elders that 
may lead  to  proactive  interventions  [11].   We are  presently 
collecting a significant pool of data from our target population, 
in their normal environment, versus controlled experiments in 
our laboratory setting.  This is another important step forward 
in  the  continuing  development  and  improvement  of  the 
hydraulic  bed sensor,  and toward  improved measurement  of 
important physiological parameters during sleep.
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