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Abstract 

A two-stage fall detection technique developed by our 
team was tested in a real hospital setting with falls acted 
out in a patient room. To further test the algorithm, data 
were collected at the University of Missouri hospital with 
actual patients. Features extracted from three dimensional 
point clouds created from Kinect depth images were used 
as input to the fall detection system. Kinect sensors were 
placed in six hospital rooms and data were collected. The 
data processed from the hospital setting are discussed, 
demonstrating the need for an automated fall detection 
system which has shown robustness in addressing real 
world challenges in a dynamic environment.  

 Introduction   

Detection of falls is a major health problem (Sadig et al. 

2004). It has been reported that 67% of fall victims who 

fell and remained helpless on the ground for a long 

duration suffered premature deaths compared to those 

who were detected earlier (Murphy 2000). Patient falls 

have devastating repercussions on the healthcare system, 

and a single fall can lead to reduced mobility and create a 

vicious cycle causing higher fall risk (Tinetti 1990). 

 Several fall detection systems have been created using 

vision sensors. Among recent work, Dubey et al. (2012) 

used depth information as well as color values recorded 

by the Microsoft Kinect sensors and computed the motion 

history images and the Hu moments of the RGB-D (color 

and depth) data. Their Support Vector Machine (SVM) 

classifier obtained an accuracy > 95% in a lab setting.  

 Other research uses visible cameras for fall detection 

with finite state machines (FSM). Background modeling 

was done to track the person in the scene; the aspect ratio 

was used as input to the FSM. A mixture of Gaussians 

was created using training images so that each Gaussian 

represented the aspect ratios of a particular pose (such as 

upright, sitting). The testing was done in laboratory 

settings, achieving approximately 85% success. Another 

system detects falls by placing the camera on the ceiling, 

extracting features (silhouette, lighting, and optical flow 

features) and training classifiers such as neural networks, 

SVMs and logistic regression (Belshaw et al. 2011). Best 

results of 92% true positives and 5% false negatives were 

obtained in a lab setting. Thome et al (2006) used 

HHMMs (hierarchical hidden markov models) for fall 

detection with two layers for modeling motion. The first 

stage distinguishes between standing and rest. Further 

state rules were used to trigger falls; 82% accuracy was 

achieved for falls and 98% for non falls. Several fall 

detection systems have also employed wearable sensors 

using accelerometers on the torso and thigh (Nyan et al, 

2008), or on the trunk (Boissy et al. 2007).  

 Our work has been conducted in real hospital rooms 

using non-intrusive Kinect depth data, based on a two-

stage fuzzy inference system that captures the history 

leading up to a fall (Anderson et al. 2009). Data have 

been collected continuously with hospitalized patients 

over several days; results are reported in subsequent 

sections. This paper reports the first testing of the Kinect 

sensors in a real hospital setting. Real-world challenges 

are discussed, and proposed improvements are suggested.   

Fall Detection System  

In our fall detection system, depth data are captured using 

the Microsoft Kinect, and the foreground is then 

extracted. A 3D point cloud is created using the depth 

information obtained from the sensors. Features extracted 

are fed to a fuzzy inference system. To address privacy 

concerns, we use information from the depth images only, 

which effectively provide a 3D silhouette. 

Foreground Extraction  

The Microsoft Kinect sensor uses a pattern of actively 

emitted infrared light to produce a depth image and 

allows for a 3D representation using a single Kinect. Two 

factors, namely its low cost and its invariance to lighting 

conditions make the Kinect sensors an ideal sensor for 

monitoring safety of patients in hospital rooms. Also, the 

depth images address privacy concerns of patients while 

still providing important activity information (Stone & 

Skubic 2011).    



The foreground extraction is performed on the raw 

depth images using a dynamic background subtraction 

algorithm. The 3D point clouds of these extracted 

foreground objects, formed using the known intrinsic and 

extrinsic parameters of the Kinect, are then tracked over 

time. Features extracted from these 3D clouds are then 

used as input to the fall detection system. Figure 1 shows 

the flow of the entire algorithm. 

Figure 1: Block Diagram of the Fall Detection Algorithm 

Using a Fuzzy Rule Based System. 

Fuzzy Inference System  

Fuzzy inference systems interpret a set of rules expressed 

as fuzzy conditional statements (Mamdani 1974). Our 

two-stage rule-based fuzzy inference system has been 

adapted from the work described in (Anderson et al. 

2009), which was developed using visible image data 

collected from two web cameras. The first layer of the 

classifier uses the states Upright, On the Ground and In 

Between. For this, two main features are used: the 

centroid height and the maximum height of the detected 

object. The rules for the first stage are given in Table I. 

 Depending on the values of the feature set at each 

frame, certain rules get fired and the membership values 

of the features in the fuzzy sets (L, M, H) fire the 

respective rules. The state decision at each stage is made 

by choosing the state with the highest membership value. 

If the degree of membership is low for all the states, the 

state will be undefined; this is part of the strength of the 

algorithm, since the wrong state is not selected. As can be 

seen from Table I, the Upright state is identified when the 

maximum height and average height of a person is high. 

 The second inference level has two states – fall and 

non-fall. The On the Ground state from level one triggers 

the fall rules for the second level. In particular, there are 

two rules which trigger the fall event. These are: 

 If the On the Ground event is detected for a long 

duration, then a fall has occurred.  

 If the Impact Confidence before an On the Ground 

event is high, then a fall has occurred.  

 The impact confidence is a function of the acceleration 

of the person download. The idea is that, if a fall occurs, 

there will be an abrupt drop in the downward direction. 

For our application, we use the minimum duration for the 

On the Ground state to be 5 seconds to trigger a fall event. 

The algorithm looks for a fall event over a window length 

of 6 seconds just before the On the Ground state. Ideally, 

if a fall has occurred, both the rules mentioned above will 

trigger. However, since this a dynamic environment with 

occlusions present, the impact confidence may not be 

present if an object occludes the person from the Kinect 

view. Hence, both the rules are kept independent. Figure 2 

shows the results of the two-layer system for a given fall.  

Table I. Fuzzy rules for first level of fall detection 

V = very low, L = low, M = medium, and H = high.  

Data Collection and Results 

For our initial experiments, we used an empty hospital 

room at the University of Missouri Hospital where three 

of our researchers performed 18 falls (e.g., walking then 

falling down or falling from the bed) and 17 non-fall 

events (e.g., crouching down, stooping to tie shoe laces, 

lying on the floor) for a total duration of 44 minutes. All 

the falls and non-falls were correctly identified.  

 Figure 2 shows the results of one of the falls correctly 

identified by the fall detection system. The bottom graph 

shows the three states of the first level. As shown, 

whenever the membership of the person at a given time is 

high for the Upright state, the membership for the On the 

Ground state is low and vice versa. The level two results 

are shown in the top graph which indicates the presence 

of the fall with varying membership values. The fall is 

identified at the frames where the membership value is 1. 

The minimum threshold for the fall event used here is 0.5.

 To collect realistic data in the hospital setting, we 

placed Kinect sensors in six patient rooms in the hospital, 

configured to log data continuously 24 hours a day. For 

this paper, we discuss the results of depth data collected 

continuously in a hospital room over a period of 17 days.  

During this period, no falls were reported by the hospital 

staff. Our algorithm reported 12 falls so these are all false 

positives identified by the algorithm. Figure 3 shows the 

Kinect (circled) attached to the wall mount TV using 

brackets. The sensor was placed approximately 7-9 feet 

from ground level.  



Figure 2: Results of the Fall Detection Algorithm Using a Fuzzy 

Rule Based System to detect a fall. The bottom graph represents 

the membership value of each image frame for the three states 

On The Ground (large dash), In Between (no dash) and Upright 

(small dash) whereas the top graph identifies the Fall event 

(membership value) which comprises the second inference level. 

The X axis represents the image frame number.    

 

 
Figure 3: Kinect mounted below the TV in a hospital room  

 Figure 4 shows example depth images, the extracted 

foreground, and the 3D clouds created from the extracted 

foreground. Images a-c are of a fall by a researcher; 

images d-f are of an actual hospitalized patient. It can be 

seen from the figure that there is a lot more clutter present 

in the dynamic environment in the hospital room when 

there is an actual patient in the room due to all the health 

monitoring devices and equipment.  

 

 
Figure 4: Depth (a,d), extracted foreground (b,e) and 3D point 

clouds (c,f) of a person falling (a-c) and an a hospitalized 

patient on the bed (d-f).    

 A point to note here is that hospital staff move in and 

out of the room freely, whereas the patients are often 

wheeled into the room, e.g., on a gurney and transferred 

to the hospital bed, which is on wheels and is sometimes 

moved around. These create unique challenges for 

automated fall detection. 

Challenges and Lessons Learned 

Conducting research in the hospital environment requires 

much pre-planning by the research team in partnership 

with the clinical, engineering, patient safety, risk 

management, infection control, regulatory compliance, 

and human subjects’ protection staff. Installation of the 

equipment requires multiple layers of approval and 

supervision to assure all regulatory standards are met. For 

example, although there are ceiling tiles that could enable 

cable or wiring installation for placement of equipment, 

this approach requires additional installation costs and 

time due to infection control and hospital regulations.  

 Access to patient rooms is limited. When a patient is 

discharged, the room must be cleaned and quickly 

prepared for the next patient admission, so there is little 

time for installing the equipment. Methods for obtaining 

the data are tested before installation and confirmed as 

working correctly before each installation. We are using 

easily removable external hard drives for each room 

which are replaced by the clinical manager on the unit 

between patient admissions. This approach is working 

well to obtain the data for analysis. As the system is 

further refined, secure wireless methods will be approved 

by the hospital information technology staff so that real 

time staff notification of potential falls or increasing fall 

risk can be sent.  

 Hospital staff and patient acceptance of using images 

for patient safety is always a concern. When we, as 

clinicians and researchers, initially approached hospital 

clinical, patient safety, and human subject protection staff, 

we demonstrated the “shadow-like” data collected in an 

empty patient room while we discussed how the images 

could be helpful in learning about the movements that 

may precede a fall. The staff were impressed with the 

anonymous images and concluded these were much less 

privacy invading compared to traditional video used in 

some hospital areas for safety and security. Simple 

posters display a sample image and explain that hospital 

staff are testing new methods to keep patients safe. Thus 

far, no concerns have been communicated to hospital staff 

by patients or family.  

  As mentioned earlier, 12 false positives were reported in 

the patient room. The constant shifting of the patient bed 

and the movable tray and the frequent visits from the 

hospital staff and relatives create the clutter which is to be 

expected in a live setting. Also, the patient being wheeled 



in and out of the room using gurneys constantly displaces 

the background model. In spite of such a dynamic setting, 

we get an average false positive of less than one per day 

which is very promising. In addition, using a two stage 

classifier makes the system more transparent compared to 

an SVM classifier since we can see which sequences 

trigger the On Ground event and then lead to a fall. This 

gives more insight into the scenario leading up to the fall 

and illustrates how the classifier works. Ultimately, this 

will lead to better fall detection and better analysis of falls 

that can aid in developing fall prevention strategies.  

 Figure 5 shows an example of a false positive scenario. 

Here, the highlighted white region is identified as a fall. 

This foreground is caused by the movement of the tray 

with the highlighted region being the original location of 

the tray. Once the tray moved, the empty spot created by 

the movement triggered the On the Ground rule and 

wrongly identified it as a fall. All of the 12 false positives 

represent similar scenarios. Future work will investigate 

better reasoning to correct this problem. 

 

 

Figure 5: Example of a false positive detected by the algorithm. 

The highlighted region in white shows the object identified as 

On the Ground. 

 This paper reports the first real-world testing of Kinect 

depth images in the hospital setting for detecting falls and 

the conditions under which they occur. The analysis 

reported is from the first 17 days of data from an 

installation in the hospital with real patients being cared 

for by staff. We also report the researcher falls conducted 

in the empty room to pre-test our algorithms in the actual 

hospital environment. Although no falls have occurred in 

any of the six rooms where the depth images are being 

continuously collected, some are likely to occur within 

the upcoming months for analysis. We are currently 

working on the challenges as equipment is moved within 

the patient rooms, staff movement as they provide care, 

and quiet resting of patients in the bed. Results using our 

algorithm have been compared with results obtained using 

Hidden Markov Models for modeling body postures 

(Anderson 2009) and have achieved higher success rates. 

Future work involves adding better automated reasoning 

to distinguish an inanimate object from a person. This can 

be addressed by increasing the frequency of the dynamic 

background update to remove stationary objects; 

however, further background errors may be introduced 

due to the patient lying still in the bed. We are 

investigating features to distinguish objects from a person 

in such a dynamic setting. We are also adding a tracking 

module which is independent of the background model so 

that any object which is not tracked in previous frames is 

considered inanimate and can be discarded.   
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