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Abstract—We developed a novel markerless motion 

capture system and explored its use in documenting elder 

exercise routines in a health club.  We present two case 

studies of elders using a treadmill from our pilot work. 

Results demonstrate that our system is capable of providing 

important feedback about the posture and stability of elders 

while they are performing exercises.  Our participants 

indicated that feedback from this system would add value to 

their exercise routines.  

I. INTRODUCTION 

his paper presents a novel exercise feedback system to 

increase exercise effectiveness and safety for older 

adults.  This system displays both dynamic and summative 

feedback regarding exercise posture and body position via 

a custom human-computer interface.  We outline our 

design of the system and present two case studies as 

examples to the efficacy of this system  

II. BACKGROUND AND SIGNIFICANCE 

 Older adults make up the fastest growing segment of the 

American society. Elderly people participate in limited 

exercise; leading to decreased fitness, deconditioning of 

muscles, and reduced energy levels [1]. Conversely, 

regular physical activity is strongly associated with better 

physical and psychological health outcomes; thus, the 

promotion of physical activity is recognized as a high 

public priority [2]. By maintaining or initiating a lifestyle 

of physical activity including exercise, older persons can 

improve their cardiovascular, metabolic and skeletal 

muscle function. Human motion capture and analysis [3] 
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has important implications to help elders understand more 

about their body posture and motion during exercise 

routines leading to greater efficacy and safety of exercise 

regimens. 

 Human motion analysis is characterized by the capture 

and evaluation of continual repetition of motion patterns 

such as walking or cycling. Measured parameters for 

human motion include stride length, cadence and walking 

speed; these have been analyzed and could have important 

implications for the biomechanical examination of 

hemiparetic patients and patients with hip and knee 

arthritis [4].  We describe two case studies from a pilot 

project incorporating a human motion analysis system to 

examine repetitive motions performed by seniors >65 

years old who were performing exercises (treadmill, 

stationary bicycle, and over lateral pull down machine) at 

a health club. In this paper we describe only the treadmill 

results on these two subjects. Processed images were 

shown to research participants during key informant 

interviews to explore the usefulness of the images to 

inform elders about their exercise routines.   

III. METHODS 

 A.  Recruitment and Selection of Participants 

 Our subjects were recruited during a local health fair for 

elders living in the community. The subjects were required 

to complete a short health questionnaire prior to 

participating in the study; if any health concerns were 

identified (e.g. previous heart condition, high blood 

pressure) they were required to obtain permission from 

their physician before they could participate.  Once the 

subjects were cleared by their physician, informed 

consent, approved through the university’s IRB, was 

obtained from each participant.  

  

 B. Tracking Contours on Images 

 Our method tracks body contours in the video of 

exercising humans.  The two contours we are interested in 

are the back (spine) as seen from the side view and the 

shoulders as seen from the rear or front view.  Fig. 1 

shows these two contours on example video frames of a 

research participant walking on a treadmill.  Fig. 2 

illustrates our approach in a block diagram.  We designed 

our approach to be both robust and flexible.   

 The environment in which we are performing this 

research study is a public gym; hence, our ability to 

control experimental conditions, such as lighting 

conditions, background environment, and subject clothing, 

is very limited.  As a result, we chose simple, safe, and 

proven methods to perform the operations in our 

algorithm.  We did control the speed and incline of the 

treadmill to limit risk for our elderly subjects; each subject 

was asked to walk on the treadmill at the lowest setting 

of 0.8 mph with a 0% incline for approximately 30 

seconds while images were taken.  
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(a) Spine contour tracking 

 
(b) Shoulder contour tracking 

 

Fig. 1 Contour tracking examples showing (a) spine tracking and (b) shoulder tracking 
 

 

     
Fig. 2 Body contour tracking system block diagram 

 

First, the silhouette of the human in each video frame was 

computed.  We used a statistics-based background 

subtraction algorithm that included shadow suppression.  

Our silhouette extraction approach is adapted from [5]. 

Second, the chamfer distance transform of each silhouette 

frame was computed, as in [6].  The chamfer distance 

transform provides an error surface upon which we can fit 

a contour template.  We used a particle swarm 

optimization algorithm, as in [7], to find the best position 

of the contour template, which, ideally, is located on the 

body contour of interest, either the back or spine.  The best 

position of the contour template is defined by a temporal 

fitness function that accounts for exercise dynamics and 

template translation and rotation.  We now describe in 

more detail each element shown in the block diagram in 

Fig. 2. 

 

 C.  Human Silhouette Extraction 

 Silhouette extraction or background subtraction is a 

problem that is very pertinent to many fields of research, 

such as surveillance, activity recognition, and computer 

vision.  However, this problem has many difficult facets 

including dynamic lightings conditions and backgrounds, 

poor scene illumination, inferior cameras, and highly 

variable foregrounds.  It is beyond the scope of this paper 

to address these matters; however, we emphasize that 

extracting “good” silhouettes is essential to our algorithm. 

The silhouette extraction algorithm we use is adapted from 

[5].  The red-green-blue (RGB) digital image (one video 

frame) was converted to a hue-saturation-value (HSV) 

color space.  Then a statistical background representation 

was formed from approximately 100 background video 
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(a) Contour match score  

 
(b) Contour match score  

 

Fig. 3 Example illustrates results of chamfer distance-based contour matching for two candidate contour 

template locations – candidate (a) is located on spine and has a better score than candidate (b) [note: the 

silhouette region is masked in these images] 

 
frames (no human is in view).  This statistical background 

representation was used to subtract the background from 

each video frame of the participant exercising, leaving 

only the pixels that correspond to the image of the 

participant.  The algorithm in [5] also has a statistics-based 

shadow detection method that reduces the effects of 

shadows on detection of human silhouettes.  Figs. 4(b,e) 

show the silhouettes computed from the corresponding 

video frames shown in Figs. 4(a,d).  We denote the 

silhouette image of video frame f as , where 

 indicates a foreground pixel and 

 indicates a background pixel. 

 

D. Chamfer Distance Transform 

We adapt the standard chamfer distance transform and 

define 

                      (1) 

For each pixel in the image, this distance transform 

calculates the minimum squared distance to the edge of the 

silhouette .  We can now use C to determine the best 

location for the contour template by summing the pixels of 

C that correspond to the contour template pixels, 

 

          (2) 

where  is the contour template parameters, 

and f is the video frame.  This summation is an error score 

of the contour template fit to the edge of the silhouette.  

Fig. 3 illustrates this score for two example contour 

template locations in the chamfer distance transform C.  

As this Fig. shows, the presumably best location of the 

contour template – on the spine – results in the lower error 

score.  The rows r and columns c of the pixels of C that 

are summed to compute (2) are found by computing 

 

       (3) 

 

where  is the coordinates of the ith template 

pixel.  The template is defined as i pixel locations on a 

grid.  Hence, the template is very general can model 

anything from straight lines to non-linear shapes.  We use 

a straight line to model the contour of the spine (see Fig. 

1a) and two sloping lines to model the contour of the 

shoulders (see Fig. 1b). In order to track the spine or 

shoulder contours, the best location of the contour 

template must be found (or searched for) in each video 

frame. 

 

E.  Temporal Particle Swarm-Based Contour Search 

 The error function that must be minimized is 

     (4) 

where  is the previous frame’s parameter solution, 

 is the temporal damping function, and 

 is the contour matching function in (2).  The 

temporal damping function  is designed such 

that large changes in the contour template parameters 

 produce a higher error value.  The 

contour template parameters are directly related to the 

movement of the spine or shoulders; hence, during normal 

movement – such as walking on a treadmill – these 

parameters should only change slightly between video 

frames.  In the future, we hope to incorporate a more 

realistic dynamic model.  Currently, we compare the 

current template parameters  to the previous frame’s 

solution  with 

 

      (5) 

where  determines the amount of damping as a function 

of change between the previous angle  and the 

candidate angle .  We use  degrees in the 

examples shown in the paper.  The particle swarm 

algorithm searches for the contour template parameters  

that minimizes .  We use a standard particle 

swarm optimization as described in [7].  
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(a) Particpant 1 video 

frame 

 
(b) Participant 1 

silhouette 

 
 

(c) Participant 1 spine angle 

plot 

 
(d) Participant 2 

video frame 

 
(e) Participant 2 

silhouette 

 
 

(f) Participant 2 spine angle 

plot 

 

Fig. 4 Spine tracking comparison of two research participants – tracking shows that 

Participant 1 has better posture and a smoother gait 

 

 
F. Examples 

Fig. 4 illustrates two examples of the feedback produced 

by our system.  Figs. 4(a,d) show a video frame of two 

participants while Figs. 4(b,e) display the corresponding 

silhouette with the spine tracking reference overlaid.  

Finally, Figs. 4(c,f) are plots of the spine angle (positive 

angle is leaning forward) versus video frame (at 7.5 

frames/second). 

The interface layout that is shown to research 

participants during the key informant interviews is 

illustrated in Figs. 5 and 6.  The top left view is of just the 

silhouette, the top right view shows the contour template 

on the silhouette image.  The bottom left view in Figs.5 

and 6 show a zoomed-in view of the contour template 

region (in this case, the spine), while the logged angle of 

the spine is displayed as a line graph in the bottom right 

view.  Also shown on the graph is a running average, 

denoted by a dashed-red horizontal line.  Each view in the 

interface shown in Figs. 5 and 6 is a synchronized video.  

Hence, the interface shows both instantaneous feedback – 

in the form of the silhouette videos – and historical 

numerical feedback – in the form of the line graph. 

 

IV. RESULTS 

  

 The images captured during the treadmill exercise 

routines of our two research subjects demonstrate the 

motion detection system was able capture both overall 

differences in posture and temporal differences between 

the subjects.  Figs. 4(b,e) illustrate the differences in 

postural attitude between the two subjects.  Participant 2 

has a much more pronounced forward pitch as he was 

walking on the treadmill compared to participant 1 who 

appears more upright with shoulders centered over her 

torso.   

 The severity of participant 2’s forward pitch during his 

treadmill activity is also shown graphically in Fig. 4(f) as a 

35 degree angle from vertical.  It can be seen by the casual 

observer that participant 2 appears to put a great deal of 

stress on his upper extremities, bracing himself for each 

stride of his gait in order to maintain balance.  In contrast, 

participant 1, in Fig. 4(c), has nearly upright posture, 

measuring nearly vertical (0 degrees).  The interface 

shows she has a slightly negative backward lean, which 

we attribute to a hooded jacket that she was wearing (see 

Fig. 4(a)).  This clothing impacted the tracking of her back 

angle slightly.   
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 Our system was also able to capture participant 2’s 

pronounced limp as evidenced by the periodic pattern in 

Fig. 4(f). His limp was partially a result of bad arthritic 

conditions in both his right hip and knee.  Also, he was 

wearing a prosthesis on his right shoe to overcome a 

condition that caused shortening of his right leg, resulting 

in a pronounced limp while ambulating. As a result of this 

limp, the baseline gait pattern associated with his walking 

on the treadmill demonstrated a variable pattern with wide 

fluctuations as he pitched forward and backward during 

ambulation.  This periodic pattern is consistent with his 

limp, as confirmed by visual inspection of his video 

sequences. 

Participant 1 exhibited a much more stable ambulation 

pattern at her baseline.  She appeared to be very confident 

in her stride and gait and she appeared to have little 

difficulty performing the exercise.  This was demonstrated 

when she let go of the treadmill handles, continuing to 

walk at the same speed without any deviation from her 

previous baseline measures. 

 Posterior images of the subjects during the treadmill 

activities are shown in Fig. 6.  These images demonstrate, 

through the shoulder contour images, the degree of side to 

side balance each participant has during ambulation.  

Again, participant 1 appears to have a very balanced 

posture from side to side with a slightly lower left 

shoulder posture compared to the right.  She was able to 

maintain this position fairly well as illustrated by the blue 

line which remains consistent around the baseline.   

 Participant 2 has a more noticeable droop in his left 

shoulder of nearly 10 degrees compared to the right side.  

His baseline is more inconsistent, demonstrating again his 

pronounced limp.   

 Although results are preliminary, our two subjects 

indicated during key informant interviews that this sort of 

system might be useful as a reminder to stand up straighter 

during exercises, to increase or decrease speed if their 

positioning was not good, and to demonstrate periodic 

improvement during their exercises.  Both subjects stated 

that the actual silhouette images themselves were more 

informative than the line graphs; although, both subjects 

appeared to use both interface elements to assess their 

exercise activities.   

V. DISCUSSION 

 

 Through our pilot work using a markerless human 

motion detection system we have been able to detect and 

evaluate elders who were performing exercises on a 

treadmill.  We were able to detect significant differences 

in postural attitude of elders from two different angles 

(side and back views) while they were using the treadmill 

in a health club setting.   

 Some limitations that we experienced while conducting 

our experiments in the field included the different daily 

lighting conditions created by large floor to ceiling 

windows directly in front of treadmills, which were part of 

the structure of the health fitness complex.  We also 

encountered some difficulties with recording images when 

someone else was exercising in the background. These 

sorts of complications were very informative for us as we 

worked with other subjects and will also provide important 

clues as to how these systems might be used in real-world 

settings in the future.   

 Our two subjects saw added value in using this motion 

detection system during their exercise routines.  The 

markerless motion capture system has potential use for the 

clinical as well.  Quantitative information can be measured 

from the kinematic data to use as a baseline measurement 

for later comparisons throughout a rehabilitation program.  

The system could also be used to periodically track 

progress and help with patient education regarding body 

mechanics that need to be performed in order to prevent 

further postural abnormalities and consequent adaptations. 

VI. CONCLUSION 

 

Exercise has important implications for postural balance 

and strengthening of people who exercise.  Continuing 

active lifestyles that include exercise is extremely 

important for our increasing elder population to prevent 

deconditioning of muscles and joints, falls, and other 

adverse events.  New technologies, such as markerless 

motion detection systems, that evaluate exercise regimens 

could better provide feedback to elders about their exercise 

regimens, add value, promote healthier lifestyles, an 

prevent exercise-related injuries. 
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(a) Participant 1 

 
(b) Participant 2 

 

Fig. 5 Examples of spine tracking interface layout that is shown to research participants 

 

 
 

 
(a) Participant 1 

 
(b) Participant 2 

 

Fig. 6 Examples of shoulder tracking interface layout that is shown to research participants 
 


