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Abstract 
This paper outlines a study that investigates spatial language 
for use in human-robot communication. The scenario 
studied is a home setting in which the elderly resident has 
misplaced an object, such as eyeglasses, and the robot will 
help the resident find the object. We present results from 
phase I of the study in which we investigate spatial language 
generated to a human addressee or a robot addressee in a 
virtual environment and highlight differences between 
younger and older adults. Drawn from these results, a 
discussion is included of needed robot capabilities, such as 
an approach that addresses varying perspectives used and 
recognition of furniture items for use as spatial references.  

 Introduction   
Recent studies have shown that one of the top five tasks 
noted by seniors for assistive robots is help with fetching 
objects, for example, retrieving missing eyeglasses (Beer et 
al., 2012). In addition, the most preferred domestic robot 
interface is natural language (Scopelliti et al., 2005). In this 
paper, we present an overview and initial results for a 
project designed to address the fetch task and study 
appropriate language that allows users to communicate 
naturally and effectively with a robot. 

When people communicate with each other about 
spatially oriented tasks, they typically use relative spatial 
references rather than precise quantitative terms, e.g., the 
eyeglasses are in the living room on the table in front of 
the couch (Carlson and Hill, 2009). Here, we explore this 
type of spatial referencing language.  A human subject 
experiment was performed, studying first college-age 
students and then adults over age 64 for comparison. The 
study was conducted in a virtual environment (VE), which 
provides a controlled setting and is easier for manipulating 
test conditions. In pilot work, the use of a VE was shown 
to have sufficient sensitivity to detect differences in test 
groups and also replicated key findings from work done in 
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physical environments (Schober, 1995). Later studies are 
planned with robots in the physical world. 

Human Subject Experiment 
The first phase of human subject experiments has been 
completed with younger and older adults. We investigated 
the type of spatial language used naturally by participants 
when addressing either a human (called Brian) or a robot 
avatar. The VE included three rooms – a central hallway 
with a living room and a bedroom (Figure 1).  

 
Fig. 1. The virtual scene used for the experiments, showing the 
robot avatar in the hallway with the living room on the left and the 
bedroom on the right.  

Each participant begins with a brief video illustrating 
the room layouts. At this point, candidate reference objects 
are shown but no target objects are included in the scene. 
The participant is then asked to explore the scene, to look 
for a specified target object which is now included in the 
VE. Eight target objects are used for the study: a book, cell 
phone, eyeglasses case, keys, letter, mug, notepad, and 
wallet; each participant has eight trials, one for each target 
object. After locating the target object, the participant is 
brought back to the hallway, facing the avatar, and is asked 
to give instructions to the avatar on the location of the 
target object. Two test conditions were used to compare 64 
younger to 64 older adults: (1) the addressee, either human 
or robot, and (2) the instruction given to the participant, 
either tell the addressee where to find the target object or 
how to find it. The descriptions given by the participants 
were recorded, transcribed, and coded for analysis as 
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follows: perspective taken (self or addressee), type of 
description: static vs. dynamic language, number of spatial 
phrases, reference object selected, type of spatial term, and 
use of spatial hedges (e.g., kind of near the middle of the 
room). Partial results are included here; additional results 
can be found in (Carlson et al, in review). 

The issue of perspective taken (self or addressee) is 
especially pertinent to a robot interpreting spatial 
descriptions. Other work suggests a preference for the 
addressee perspective in human-human communications 
(Mainwaring et al., 2003) and human-robot 
communications (Tenbrink, Fischer & Moratz, 2002).  

Figure 2 shows the results of the perspectives taken in 
the study; the how and where conditions are combined here 
to highlight the differences between younger and older 
adults. The younger adults preferred the addressee 
perspective when facing either the human (Brian) or robot 
avatar, consistent with previous work. The older adults 
preferred the addressee perspective when speaking to 
Brian; however, when speaking to the robot, they used a 
self perspective more often than the addressee perspective.  

Figure 2 also shows the usage of ambiguous 
perspective, e.g., the keys are on the table in the bedroom. 
In this case, there are no cues to determine which 
perspective was used. Interestingly, younger adults almost 
never used this type of ambiguous language, whereas older 
adults often did. In general, older adults used significantly 
fewer words (24 vs. 28 per description), fewer spatial units, 
and fewer reference objects than younger adults, preferring 
instead to use a more concise description.  

Figure 3 shows examples of descriptions, highlighting 
differences between older and younger adults for the 
Robot, Where test condition. Note the dynamic language in 
the last example (go to the room…). Although the How 
condition resulted in more dynamic descriptions compared 
to the Where condition, a dynamic structure was observed 
in both conditions (about half for the younger adults).  

It is not clear why there are differences between 
younger and older adults in perspective, detail, or language 
structure. The study participants were explicitly shown the 
front side of the robot and told what the front was so it 
should have been clear that they were addressing the robot 
face to face. (Additional cues on the robot could clarify 
this for future studies.) We also looked for signs that the 
older adults might not have learned or remembered an 
accurate detailed map of the rooms; however, it does not 
appear that the elderly participants captured a less detailed 
mental model of the environment.  

We were also interested in investigating spatial 
references used in the descriptions. Overall, there were 
very few references given to small objects, i.e., candidate 
reference objects purposely placed on horizontal surfaces 
around the rooms. For each target object, there were two 
candidate reference objects placed nearby on the same 

surface that could have been used in the description. 
However, these objects generally were not used. There 
were references made to larger units, both furniture items 
and house units, as shown in Figure 4. The most popular 
references were made to room and table. All target objects 
were located on some type of table, so this is not 
surprising. The many references to room instead of 
bedroom or living room show further ambiguity challenges 
in interpreting the spatial descriptions.  

To perform this type of fetch task efficiently, the robot 
will need to be able to understand which room the speaker 
indicates, which is complicated by the varying perspectives 
used. The robot will also need the capability to recognize 
objects in the scene, especially furniture items and room 
units and understand spatial relationships between them. In 
the remaining paper, we discuss our approach for 
addressing these challenges. 

Spatial Language Processing  
Natural language, even when constrained to the domain of 
spatial descriptions in a limited and known environment 
can vary too greatly to be directly understood by the robot. 
The descriptions logged in the human subject experiment 
illustrate this. For this reason we are developing a process 
to convert spoken language into a limited set of robot 
commands that the robot can understand, i.e., a minimal set 
that will support the fetch task in a physical environment. 

 
Fig. 2. Perspectives taken for younger and older adults 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Brian Self Robot Self Brian Addr Robot Addr Brian Ambig Robot Ambig

Younger

Older

Older Adults  
• The wallet is in the bedroom on the bedside table 
• The notepad is in the livingroom on the desk 
• On the table in the livingroom in the back of the sofa 

Younger Adults  
• The wallet is in the room on your right around the bed and 

on the bedside table 
• The notepad is in the room on your right. Walk in and its on 

the white...dresser to your left next to an empty box of 
kleenex. 

• Go to the room on your right go past the couch… behind 
the couch there's an end table… the mug is on the end table 

Fig. 3. Sample Descriptions for Robot, Where 
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Our goal is not to solve the natural language processing 
problem in general, but rather to address the specific 
challenges in interpreting spatial descriptions. If 
ambiguities still exist, the robot can establish a dialog with 
the user for clarification; however, the goal is to allow the 
robot to reason about uncertain conditions first and ask 
questions only if necessary. 

Overview 
Figure 5 outlines the process used to convert spoken 

language into robot commands. After speech recognition, 
each word in the spatial description is tagged with an 
appropriate part-of-speech (POS). Next, the tagged 
description is chunked into a tree of phrases. The relevant 
Noun Phrases (NPs) are then extracted from the tree to 
adjust directional terms for accommodating the perspective 
taken by the user when giving the spatial description. The 
perspective adjustment process requires some additional 
inputs, namely prior knowledge of the environment and the 
current pose of the robot in the scene. The prior knowledge 
consists of a map of the rooms in the environment and a 
list of possible furniture items in each room. The 
adjustment process then returns the adjusted NPs and the 
join process combines them back into the tree of the entire 
description. The complete and perspective-adjusted 
description is then converted into robot commands. A 
hybrid map and path planning process similar to (Wei et 
al., 2009) could be added to support larger, more complex 
environments, although we have not considered this here. 

Speech recognition is still a challenge and often results 
in errors. We assume that speech recognition accurately 
transcribes the speech into text. While this assumption is 
not realistic currently, it can be mitigated by training the 
robot to recognize its owner’s voice and other methods. 
The capability of discourse between the robot and the user 
and using a constrained vocabulary are some methods to 
help mitigate the problems with speech recognition.  

Accurate POS tagging is also important to the overall 
process, because the proceeding steps explicitly depend on 
it. Chunking uses a set of grammatical rules, which are 
essentially regular expressions based on POS tags (Bird et 
al., 2009). Below is a simple grammar rule for a NP.  

NP:  {<DT|PP>?<JJ>*<NN>} 
   {<NN>+} 

These rules define two common patterns of a NP. The first 
one consists of a determiner or possessive optionally 
followed by one or more adjectives and ending with a 
noun, i.e. “the blue chair”. The second rule is consecutive 
nouns, i.e. “coffee table”. 

If POS tagging is done incorrectly, the chunking will 
also fail. For example, an issue observed with the default 
NLTK (Bird and Loper, 2004) POS tagger was that the 
word “bed” was tagged as a verb in every description 
where it was present, although it was clear to a human that 
it was used as a noun. In this situation the chunker would 
not recognize any phrase containing “bed” as an NP.  

While it is possible to extend the rules for an NP to 
include phrases that end with a verb, this would result in 
some verb phrases being labeled as NPs by the chunker. A 
better solution is to improve the POS tagger by training it 
on a dataset. This dataset is simply a file of all of the 
descriptions collected from the experiment tagged by the 
default tagger which is then manually reviewed to fix the 
incorrect POS tags. Also, some rules are created for a 
bigram trained tagger to appropriately tag components of 
certain bigrams. If our dataset accurately depicts the spatial 
descriptions typically used, we would expect the trained 

 
Fig. 4. Total reference counts for furniture and room units. 
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Fig. 5. Language processing steps to translate spoken spatial 
descriptions into robot fetch commands 
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tagger to perform well because it will assign the correct 
tags from the training data and because of the constrained 
vocabulary. If a word not found in the training data is 
encountered, the nearest known synonym can be found 
using the WordNet database, as proposed in MacMahon et 
al. (2006).  Further tests will explore this. 

Conversion of the description to robot commands also 
depends on accurate POS tagging. The convert process is 
similar to the extract process, except only words with 
certain POS tags are extracted, and some words will 
actually be added to the command. For example, static 
(Where) descriptions do not necessarily contain action 
verbs such as “go” and “turn”, so the convert process will 
add these verbs to form commands. Dynamic (How) 
descriptions are generally in a form very close to a robot 
command as they are given.  

To simplify and optimize the extract and convert 
processes, specific custom POS tags will be used instead of 
general POS tags. Furniture items, rooms, directions, 
hedges, action verbs and target objects will each have their 
own specific tags in the training dataset. The chunker’s 
grammar rules will also be based on these tags. The extract 
and convert processes then become very straightforward. 
These processes can simply pull out words that contain 
POS tags of interest. The convert process will add an 
action verb to form a command if it cannot find one.  

Adjusting the Perspective 
Figure 2 shows that the perspective taken by the speakers 
is not consistent in either group or in the addressee 
subgroups. Although older adults tend to take their own 
perspective more often when addressing the robot, there is 
no way to predict which perspective will be taken. Others 
have addressed this issue. Trafton et al. (2005) use a 
cognitive architecture to help the robot reason about 
perspective. Berlin et al. (2006) consider the teacher’s 
perspective in robot learning by demonstration. 
Additionally people periodically confuse left and right, 
particularly when giving directions verbally as in this 
study. Here, we use prior knowledge of the environment to 
reason about perspective and correct human errors. Unlike 
Matuszek et al. (2010) where only environmental 
structures are considered, we use landmarks and context to 
reason about left and right.  

Figure 6 shows a map of the virtual environment used 
in data collection. The Start point indicates the initial 
position of the speaker. This layout simplifies the situation 
significantly; however, more complex scenarios will be 
discussed. Also, given the initial position, determining the 
perspective is only relevant for rooms. However, the same 
approach can be applied if the robot, speaker, and target 
object are in the same room, provided the location and 
orientation of furniture items are included in the map. 

Our approach requires that certain conditions are met; 
later we discuss some mitigation strategies if they cannot 
be met. The first condition is that the robot is given an 
approximate map of the environment. This map must at the 
very least include the entrances to the rooms and their 
names, e.g., living room, bedroom. Ideally, the map should 
also include a list of possible furniture items in each room. 
The map does not have to include all of the furniture, 
although including some of the larger, fixed items (e.g., 
bed) will improve the efficiency of the fetch. Providing the 
robot with such a map serves a dual purpose of 
determining the perspective taken by the speaker as well as 
speeding up and simplifying furniture recognition 
discussed in the next section. The second condition is that 
the robot knows its own location and orientation on the 
map, at least in relation to the entrances to the rooms.  

From Figure 5, the spatial description (which could be 
partial) is chunked into noun phrases. Proper chunking is 
critical; we are currently comparing and combining several 
approaches. Next we look for the appearance of a room 
name and “right” or “left” in each noun phrase. This is why 
chunking is important, because the directional term 
intended for a room or object must appear in the noun 
phrase about that room or object. If a noun phrase with a 
room name and a directional term is found, the robot 
compares this information with the map and its starting 
position and orientation. For example, if the speaker told 
the robot to “turn right into the bedroom” and the 
combination of the map and the robot’s position and 
orientation indicate that the bedroom is on the robot’s left, 
the robot can deduce that it should turn left to go into the 
bedroom where the target object is. This will not work if 
there is a bedroom on the left and another on the right. This 
approach will also fail if the speaker leaves out the name of 
the room and just says “go into the room on the right”.  

To address these situations, additional steps are taken. 
The list of furniture items contained in each room is used 
to reason about the most likely room intended, by 
examining the furniture items mentioned. This also applies 
to the situation where the room is unnamed by the speaker 
(e.g., “room on the left”). For example a nightstand or a 
bed will generally be located in the bedroom and a couch 

 
Fig. 6. A top-down layout of the virtual environment 
used in the human subject experiment. 
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will generally be located in the living room. However, this, 
too, can fail if the furniture items in the description do not 
clearly indicate the room or multiple rooms contain the 
same furniture items. In this case, it is important that the 
robot recognize that ambiguity still exists. We propose 
discourse with the speaker in this situation. Since discourse 
is time consuming, however, we use it as a last resort if all 
of the reasoning steps fail.   

Furniture Recognition for Spatial Referencing 
Our intent is to study the robot fetch task in the physical 

world and include the perceptual challenges placed on the 
robot to accomplish the task. This is an important step 
towards language-based human robot interaction (HRI), as 
grounding of language is related to human perception (Roy 
2005). The results of the human subject experiment 
indicate that furniture items are referenced often as 
landmarks in the spatial descriptions. Furniture placement 
could be included in a map; however, some items may be 
moved, so we do not want to rely on precise, mapped 
locations. As shown in Figure 3, the descriptions 
sometimes assume an intrinsic front or back of the 
furniture (e.g., …back of the sofa). Thus, to perform the 
fetch task in the physical world, it will be important for the 
robot to not only recognize furniture items but also capture 
their orientation. Our robot is built on a Pioneer 3DX base. 
The Microsoft Kinect provides the main sensing 
capabilities, positioned at a height of 1m; both color (RGB) 
and depth images are used. 

Others have proposed language-based HRI approaches 
that require landmark recognition but have not included 
recognition strategies (e.g., Chen and Mooney, 2011). 
There is previous work on object recognition using the 
Kinect. Lai et al. (2011) use color and depth images to 
recognize small objects. Janoch et al (2011) use the 
histogram of oriented gradients and size to recognize a 
variety of objects, including furniture. Much of the related 
work focuses on recognition only and is not necessarily 
concerned about execution speed. Speed is important for 
timely human-robot interaction.  And, as noted above, 
detecting the orientation of the furniture item is important. 

Furniture Recognition Methods 
Large objects in the scene are first segmented based on the 
depth image; the corresponding color image segment is 
then used in the recognition process. Many furniture items 
found in the home have a primary horizontal plane, for 
example, chairs, beds, couches and tables. The main 
horizontal plane (the main plane) is identified using the 
RANSAC algorithm (Golovinskiy et al, 2009). Seven 
features are used in the furniture classifier: 

1. Furniture size (area of the main plane ) 

2. Main plane height (average height of all points in the 
plane)

3. Main plane texture (local binary pattern operator
(Ojala et al., 1996)) 

4. Furniture type (chair-like or table-like, computed 
based on shape) 

5. Main plane red color proportion, normalized 
6. Main plane green color proportion, normalized 
7. Main plane blue color proportion, normalized 

All features are normalized and have an equal weighting. 
The furniture classification process has two steps. In 

step 1, the first four features above are used as inputs into a 
system of fuzzy rules to recognize the general type of 
furniture item, based on the class with the highest 
membership value. In step 2, furniture items are further 
separated by color; the last three features are used with a 
support vector machine to make the final decision.  

The confidence of the recognition result is determined 
from two aspects; the first is intrinsic confidence 
(determined by the features) which is the fuzzy 
membership value. The second is the extrinsic confidence 
which depends on the robot’s position with respect to the 
object. There are three factors in extrinsic confidence: 
distance, viewing direction, and viewing completeness, i.e., 
based on whether the entire item is in view. The 
confidence of the recognition result is the mean of these 
two kinds of confidence. For large furniture items, such as 
the dinner table, the couch and the bed, the robot is seldom 
able to view the entire item. Therefore, the viewing 
completeness measurement for these items is relaxed to 
prevent them from being ignored by the robot due to a low 
recognition confidence. 

Spatial referencing algorithms will require a known 
orientation of furniture items. The object front is computed 
differently for chair-like vs. table-like objects. The front of 
table shaped objects is based on the direction of the visible 
edge. The front of chair shaped objects is based on the 
direction of the chair back relative to the main plane, as 
shown in Figure 7.  

Experiments and Results 
To test this approach, nine furniture items were selected, to 
represent items used in the VE for the human subject 
experiment (Figure 8). Color and depth images were taken 

 
Fig. 7. Chair shaped objects have an intrinsic front, as shown by 
the arrow, independent of the robot’s relative position. For table 
shaped objects, the front is determined by the robot’s relative 
position and viewing perspective.  
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around each object in 8 directions and 8 distances from 1 
to 3m. Of these 64 images, 48 were used for training and 
16 for testing. As a further test, images were also collected 
with cluttered table tops to better represent an unstructured 
home environment. For each of these 6 items, 8 images 
were collected at 1.5 m. The results are shown in Table 1 
for both tests. The furniture recognition process runs in 
about 9 ms on an Intel core i7 CPU at 1.6 GHz. 

Orientation was also tested using the same data as the 
uncluttered furniture recognition test. Results are shown in 
Table 2 for the 8 directions tested, as error values between 
orientation detected and the ground truth, in degrees. 
Objects 1 and 3 (small round table and hexagon table) are 
excluded from this test due to the general round shape. 
Other table shaped items (coffee table, dining table, desk, 
and bed) are symmetrical; thus, an orientation of less than 
180 degrees is computed. The results show that orientation 
is easier to compute for some viewing angles. To improve 
results, the robot can be directed to move to a better 
viewing angle, based on the confidence level. 

Table 1. Recognition Results for furniture in Fig. 8 
Furniture 
Sample 

Without Clutter With Clutter 

1 100% 100% 
2 100% N/A 
3 100% 100% 
4 87.5% N/A 
5 100% 87.5% 
6 100% 100% 
7 100% 100% 
8 67.5 N/A 
9 75% N/A 

Spatial Referencing 
The spatial referencing language with respect to furniture 
items will build on the Histogram of Forces (HoF) 
(Matsakis and Wendling, 1999) to model spatial 
relationships between two objects. The HoF offers a 
mathematical framework that produces similar results to 
the Attention Vector Sum (Regier and Carlson, 2001) 
without training data and also supports any arbitrary shape 
and size of either object. In previous work, the HoF was 

used to generate spatial descriptions of a robot’s 
environment based on range data and support a dialog with 
a human user about objects in a scene (Skubic et al., 2003; 
2004). Initially, the work considered planar relationships 
projected onto the horizontal plane. Later, 3D descriptions 
were considered by also projecting object models onto a 
vertical plane (Luke et al., 2005). A similar approach will 
be used for the fetch task to support 3D descriptions. 

Table 2. Error results of the orientation test for 8 directions (in 
degrees). Low error values are shown in red 

 0 45 90 135 180 225 270 315 
1 × × × × × × × × 
2 47 28 112 25 32 4 1 6 
3 × × × × × × × × 
4 10 35 47 37 12 2 4 7 
5 1 0 2 2 × × × × 
6 1 3 1 3 × × × × 
7 5 5 1 5 × × × × 
8 48 172 21 51 15 5 5 1 
9 6 2 5 9 × × × × 

Conclusion 
In this paper, we present an overview of results from a 
human subject experiment showing differences between 
older and younger adults in generating spatial descriptions 
for a robot fetch task. The results illustrate key challenges 
in determining the perspective used by the speaker, 
supporting both dynamic and static language structure with 
varying detail, and using furniture items in spatial 
references, possibly with frames intrinsic to the object.  

We address these challenges by providing the robot 
with recognition and reasoning strategies that are similar to 
human strategies and thus, establish a common ground 
between the robot and the human user. The robot is similar 
to a human in how it recognizes furniture and its 
understanding of spatial relationships using HoF. Common 
ground is the map of the house and furniture content of the 
rooms; a human navigating through the environment 
creates a similar map in her head. Through custom POS 
tags, more common ground is created because the robot 
knows that left and right are directions, a bed is furniture, 
and keys are a target object. Reasoning about the purpose 
of the room using furniture content to determine which 
room is meant by the speaker is another form of common 
ground. Thus, providing a robot with these capabilities will 
help create a natural interface with the human user. 
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Fig. 8. The nine furniture items tested 
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