
  

 
Abstract--A requirement for robust human activity analysis from video in complex and dynamic environments involves 

the reliable segmentation of individuals.  This paper describes a system that has been built to segment moving people in 
video using the strengths of both color and texture features.  In addition, a new algorithm was developed for the detection 
and removal of shadows from change detection images.  To preserve the privacy of the individual, the output of this 
system is a binary map segmentation that distinguishes the individual’s silhouette from his or her background. 
 

Index Terms--Human segmentation, color computer vision, video surveillance, eldercare.  

1. INTRODUCTION 

UMAN segmentation, with respect to a fixed camera location, is a classical image processing 

problem with countless applications to video surveillance.  Not only must foreground objects be 

segmented, but a background model must be acquired and updated given potential changes in 

lighting or object manipulation.  In complex and dynamic environments, there is an increased 

need for incorporating multiple features that perceive the problem in unique ways.  The system 

described in this paper utilizes multiple feature sets including texture, color and shadow 

information to improve the reliability of segmentation in real indoor environments. 

Silhouette extraction, namely, segmenting the human body from the background with the 

camera at a fixed location, is the initial stage in activity analysis. Before foreground silhouette 

extraction can occur, an accurate background model must be acquired.  The background is 

defined as any non-human, static object.  After the background model is initialized, regions in 
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subsequent images with significantly different characteristics from the background are 

considered as foreground objects.  As well, areas classified as background are used to update the 

background model.   

There have been numerous algorithms proposed for background representation update and 

foreground segmentation.  A short list includes Mean and Covariance, Least Median Squared, 

Mixtures of Gaussians [15], and Eigen Backgrounds [13].  Each of these techniques models the 

background and makes decisions only on pixel level information such as color or intensity. The 

Wallflower [17] algorithm is a notable exception using a Wiener prediction filter for pixel level 

decisions, logical filling at the region level, and multiple background models at the image level.   

The major contribution of this paper is the use of both color and texture information to build a 

robust background model and determine change.  Texture information is extracted into 

histograms of gradients from an extended YCbCr color space.  As well, color histograms are 

built for each pixel using a modified Hue, Saturation, and Value (HSV) color space.  Shadows 

cast by people moving through the scene modify the color information of background pixels and 

are incorrectly classified as foreground pixels; therefore, a separate algorithm to detect shadowed 

areas will be described. 

Section 2 outlines the silhouette segmentation procedure.  This is followed by the description 

of the texture-based features in section 3 and the color-based features with shadow removal in 

section 4.   Next, section 5 presents the rules for change detection.  Section 6 describes the 

update of the background model.  Segmentation results for a variety of sequences are shown in 

section 7.  Section 8 gives the conclusions of the paper and work that needs to be accomplished 

in the future. 



  

2. SYSTEM OVERVIEW 

The context for our video sensor network is an eldercare facility.  This facility is an assisted 

living community for elderly residents.  The sensor network in each living space consists of 

binary motion detectors using infrared, bed sensors, stove temperature sensors, and web cameras 

for video processing.  If a resident falls and is injured, the system needs to recognize the event 

and take appropriate action.  As well, longer term activities such as watching television, cooking, 

and bathroom visits can be tracked to build daily patterns.  Changes in these daily patterns could 

be a symptom of deeper illness in the resident.  Therefore, the goal of the system is to both 

classify aberrant behavior and predict future impairments of the individual.  The consistency and 

reliability of silhouette segmentation is critical to the well being of a resident.  If segmentation is 

not consistently operating properly or if there are too many false alarms generated, accidents 

could be missed or in the extreme, caregivers and residents might become irritated and disregard 

the system. 

Silhouette segmentation is a classification task.  The classifier determines if a location in an 

image belongs to a known background or if it belongs to something introduced to the scene.  

Using a stationary camera, a model of the background is built using the first T frames of the 

sequence.  With each new frame, the background model is updated using the pixel values 

segmented as background.  The background model is shown in Fig. 1.  

 

 

 

 

 

 

 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1: A graphical representation of the background model. (a) A sequence of ten images is input to the system. (b) A 3x3 mean filter is passed 

over the red, green and blue color planes of each input image.  (c) Color and texture descriptors are then extracted from these images.  (d) Finally, 
the means and standard deviations of the descriptors at each pixel are found over the input sequence. (e) During runtime, a 3x3 mean filter is 

passed over each new image.  (f) Color and texture descriptors are then extracted from the image.  (g)  The foreground is then found for the new 
image using the background model.  (h) The background model is then updated. 

 

 

 

 

 

 

 

 

 

 

Fig. 2:  Silhouette extraction procedure. (a) Images are captured from a video camera in the sensor network. (b) A 3x3 mean filter is passed over 
the red, green and blue color planes of each input image. (c) Silhouettes are found in color and texture features. (d) Shadow regions are identified. 
(e) Shadows are removed from the output of silhouettes found from color features.  (f) The results of the texture and color silhouettes are fused.  

(g) Morphological and logical operators are applied to the output of silhouettes to remove false alarms and fill-in silhouettes. (h) The fused data is 
then dilated to correspond to the size of the subjects in the image. (i) The final silhouette output image.   
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An overview of the change detection model is shown in Fig. 2.  After the background model is 

built, change detection can be performed for silhouette segmentation.  Each input image is first 

smoothed with a 3x3 mean filter.  Pixels that differ significantly from the background model are 

detected using color and texture features.  The change detection algorithm is susceptible to 

shadows in the color features. Therefore, shadows are detected in parallel to the detection of 

change.  Any change due to shadow is removed from the color silhouette.  The changes acquired 

using texture and color features are then fused, creating a binary image representing change. 

Morphological and logical operations are then performed on the change detection images to 

remove noise and to form solid, compact silhouettes.  A final morphological  dilation is executed 

so that the detected silhouette is approximately the same size as the true silhouette of the person 

the scene. 

 

3. TEXTURE FEATURES 

Texture is a reliable source of information for scene description and change detection.  

Previous research in texture features includes [1, 8, 9, 11, 16].  A smaller amount of research has 

been focused on texture in color spaces [4, 5, 10, 14].  We believe color texture features are more 

robust than their monochromatic counterparts and are necessary for the modeling of a complex 

background.     

Numerous factors go into the choice of color space.  Because lighting is an uncontrolled 

variable in the scene, the color space chosen to extract textural information must be robust to 

lighting changes.  The red, green and blue gamma corrected channels output from the camera 

make up the 𝑅′𝐺 ′𝐵′     color space.  Though 𝑅′𝐺 ′𝐵′     color space is easily produced, features in 

this space are susceptible to changes in brightness.  The 𝐻𝑆𝑉     color space; hue, saturation, 



  

value; has advantages over 𝑅′𝐺′𝐵′     space.  Most importantly, it separates chroma, (color), and 

luma, (brightness), components.  However, there are still some shortcomings.  First, the luma 

component is unreliable for texture because changes in lighting or hard shadows cause drastic 

changes in the signals received.  Also, when luma is low, the hue is unreliable.  In addition, 

though the chroma and luma are separated, experimentation shows that the saturation is 

correlated with light intensity. 

The 𝑌𝐶𝑏𝐶𝑟      color space was selected for this system due to its reliability in a wide range of 

lighting situations.  This color space again has a luma component; defined using the constants 

𝐾𝑏     , 𝐾𝑟     , and 𝐾𝑔      which are based on perceived brightness of human vision to blue, red and 

green; but it separates the blue and red chroma components, 𝐶𝑏      and 𝐶𝑟     .  We have extended 

the 𝑌𝐶𝑏𝐶𝑟      space to also include a green component.  This 𝐶𝑔      component is extracted in a 

fashion similar to the 𝐶𝑏      and 𝐶𝑟      components.  These three chroma quantities describe how 

much the red, green and blue components contribute to luma.  After experimentation, it was 

determined that better results were achieved after normalization by dividing the 𝐶𝑏     , 𝐶𝑟      and 

𝐶𝑔      components by the luma 𝑌    .  The new 𝐶𝑏
′     , 𝐶𝑟

′      and 𝐶𝑔
′      components used to extract 

feature descriptors are defined as 

𝑅′ , 𝐺 ′ , 𝐵′ ∈  0,1  

𝐾𝑏 = .114 
 

𝐾𝑟 = .299 
 

𝐾𝑔 = 1 −  𝐾𝑏 + 𝐾𝑟 = .587 
 

𝑌 = 𝐾𝑟𝑅′ + 𝐾𝑔𝐺′ + 𝐾𝑏𝐵′ 
 

𝐶𝑏
′ =

 
𝐵′ − 𝐺′ −

𝐾𝑟

1 − 𝐾𝑏
 𝑅′ − 𝐺′ 

2
 + .5

𝑌 + 1
 

 



  

𝐶𝑟
′ =

 
𝑅′ − 𝐺′ −

𝐾𝑏

1 − 𝐾𝑟
 𝐵′ − 𝐺′ 

2
 + .5

𝑌 + 1
 

 

𝐶𝑔
′ =

 
 −

𝐾𝑟

𝐾𝑏 + 𝐾𝑟
𝑅′ + 𝐺′ −  

𝐾𝑏

𝐾𝑏 + 𝐾𝑟
𝐵′ 

2
 + .5

𝑌 + 1
 

 

The silhouette change detection features calculated using the 𝐶𝑏
′ 𝐶𝑟

′𝐶𝑔
′  space are based on the 

Edelman descriptor, [7].  The practical use and robustness of the Edelman descriptor have been 

displayed in the Scale Invariant Feature Transform, (SIFT) [12]. First, gradients are computed 

for each pixel in the 𝐶𝑏
′ , 𝐶𝑟

′  and 𝐶𝑔
′  components.  For each pixel in each gradient image, an eight 

dimensional histogram, 𝑕, is built using a five by five window of gradients.  The orientation of 

each pixel’s gradient, 𝑔𝑜 , determines into which bin, 𝑏𝑟 , the gradient resides.  The bin index 𝑏𝑟  is 

the floor of the gradient orientation 𝑔𝑜  divided by 45𝑜 .  The neighboring bin, 𝑏𝑛 , is identified as 

the second nearest bin to the gradient orientation 𝑔𝑜 .  The gradient’s magnitude, 𝑔𝑚 , is then 

linearly interpolated between the nearest bin and the neighboring bin and added to both. 

The linear interpolation value ∝ represents how close the gradient’s direction is to the center of 

the nearest bin.  The value ∝ is found by first computing the modulus of the gradient direction by 

45𝑜 .  The absolute difference of this value with 22.5𝑜  represents how many degrees this gradient 

is off from the center of the bin.  Finally, this value is divided by 45𝑜  to compute the linear 

interpolation. 

Hence formally, for each color component, 

𝑔𝑜 ∈  0,360  
 

𝑔𝑚 ∈ [0,  2] 
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For each gradient in a window for a given pixel, the associated histogram 𝑕 is updated as 
 

𝑏𝑟 ∈  0,7  
 

𝑏𝑛 ∈ [0,7] 
 

∝ ∈ [0, .5]. 
 

𝑏𝑟 =  
𝑔𝑜

45
  

 

𝑏𝑛 =  
(𝑏𝑟 + 1) 𝑚𝑜𝑑 8 𝑖𝑓 𝑔𝑜𝑚𝑜𝑑 45 ≥ 22.5 
(𝑏𝑟 + 7) 𝑚𝑜𝑑 8 𝑒𝑙𝑠𝑒

  

 

∝=
 𝑔𝑜𝑚𝑜𝑑 45 − 22.5 

45
 

 
𝑕 𝑏𝑟 = 𝑕 𝑏𝑟 +  1−∝ 𝑔𝑚  

 
𝑕 𝑏𝑛 = 𝑕 𝑏𝑛 + ∝ 𝑔𝑚  

 
The gradient magnitude is the Euclidean distance of the change in the horizontal and vertical 

direction and therefore has a maximum value when the horizontal and vertical change are both 1, 

such that 

 
𝑔𝑚 𝑚𝑎𝑥

=  12 + 12 =  2 
 

The results from the process outlined above are three images where each pixel is associated 

with an eight bin histogram descriptor.  Each eight bin histogram represents the conglomeration 

of gradient magnitudes in eight directions for a window of texture.  The strength of this 



  

descriptor is its matching ability and robustness to pixel jitter.  Pixel jittering phenomenon refers 

to how consistently a camera registers pixel values through time.  This jitter is due to noise in the 

perceived intensity of red, green and blue elements in the CCD of the camera.  The cameras used 

in this system are low cost web cameras that more accurately capture intensity than color 

information.  Human vision is more sensitive to intensity changes than color changes, making 

these cameras suitable for communication over the web.  Higher quality cameras with less pixel 

jitter could be used, but because this system is to be deployed in an assisted living community, 

the most economically viable option is to use cheaper web cameras. 

4. COLOR HISTOGRAM FEATURES 

Our experiments have shown that the use of both color and texture information is more robust 

than using either alone.  This system uses the 𝐻𝑆𝑉 color model to build a color histogram at each 

pixel.  Using hue, 𝐻, and saturation, 𝑆, is preferred over the 𝑅′𝐺′𝐵′ color space as explained 

earlier, because this representation separates chroma from luma.  The 𝐻𝑆𝑉 model is defined as 

∨ −𝑀𝑎𝑥 

∧ −𝑀𝑖𝑛 

𝐻 ∈  0,360 , 
 

𝑆, 𝑉, 𝑅′ , 𝐺 ′ , 𝐵′ ∈  0,1 , 
 

𝐵𝑚𝑎𝑥 = 𝑅′ ∨ 𝐺′ ∨ 𝐵′, 
 

𝐵𝑚𝑖𝑛 = 𝑅′ ∧ 𝐺′ ∧ 𝐵′, 
 

𝐻 =

 
 
 
 

 
 
 

0,                                              𝑖𝑓 𝐵𝑚𝑎𝑥 = 𝐵𝑚𝑖𝑛

60  
𝑔−𝑏

𝑏𝑚𝑎𝑥 −𝑏𝑚𝑖𝑛
 ,                   𝑖𝑓 𝐵𝑚𝑎𝑥 = 𝑅′ 𝑎𝑛𝑑 𝐺′ ≥ 𝐵′ 

60  
𝑔−𝑏

𝑏𝑚𝑎𝑥 −𝑏𝑚𝑖𝑛
 + 360,       𝑖𝑓 𝐵𝑚𝑎𝑥 = 𝑅′ 𝑎𝑛𝑑 𝐺′ < 𝐵′ 

60  
𝑏−𝑟

𝑏𝑚𝑎𝑥 −𝑏𝑚𝑖𝑛
 + 120,       𝑖𝑓 𝐵𝑚𝑎𝑥 = 𝐺′

60  
𝑟−𝑔

𝑏𝑚𝑎𝑥 −𝑏𝑚𝑖𝑛
 + 240,       𝑖𝑓 𝐵𝑚𝑎𝑥 = 𝐵′

 , 

 



  

𝑆 =  
0 𝑖𝑓 𝐵𝑚𝑎𝑥 = 0 

1 −
𝐵𝑚𝑖𝑛

𝐵𝑚𝑎𝑥
𝑒𝑙𝑠𝑒

 , 

 
𝑉 =  𝐵𝑚𝑎𝑥 . 

 

Similar to the texture descriptor, for each pixel in the image, a histogram is built using the 

local color information.  The 360𝑜  hue component is discretized into eight bins, similar to the 

gradient orientation in the texture feature, resulting in a feature vector of length eight at each 

pixel.   

As mentioned earlier, if the light intensity is low, then hue is unreliable.  In an extreme 

example, the 𝑅′𝐺′𝐵′ value of (.01,0,0) has a hue of 0𝑜  and a saturation of 1, while the 𝑅′𝐺′𝐵′ 

value of (0,.01,0) has a hue of 120𝑜  and a saturation of 1.  So, though these colors are nearly 

identical to a human observer, they are represented as very different values in HSV color space.  

Due to saturation being a measure of color purity, both of these values make sense in HSV space, 

but cause great difficulties when trying to compute similarity.  We therefore define a new term, 

“brightness saturation”, 𝑆𝑣 , as 

𝑆𝑣 = 𝑆 ∗ 𝑉 =  1 −
𝐵𝑚𝑖𝑛

𝐵𝑚𝑎𝑥
 𝐵𝑚𝑎𝑥 = 𝐵𝑚𝑎𝑥 − 𝐵𝑚𝑖𝑛 . 

 

This brightness saturation value is linearly interpolated over the two nearest bins from the hue 

discretization, similar to the gradient magnitude in the texture feature. 

 

5. CHANGE DETECTION 

Before calculating the occurrence of change, a background model must be built and 

maintained.  For this system, the background is modeled with a single Gaussian distribution, 

with standard deviation modeling the pixel jitter from each pixel’s mean.  The first T images, 



  

(we use 10), of a sequence are used to initialize the background model.  The texture and color 

feature vectors described above are built for each of these images.  The means of the texture and 

color vectors; 𝜇𝑕
𝐶𝑏

′ , 𝜇𝑕
𝐶𝑟

′ , 𝜇𝑕
𝐶𝑔

′  and 𝜇𝑕𝐻𝑆𝑣
; represent the average background while the standard 

deviations; 𝜎𝑕
𝐶𝑏

′ , 𝜎𝑕
𝐶𝑟

′ , 𝜎𝑕
𝐶𝑔

′  and 𝜎𝑕𝐻𝑆𝑣
; represent pixel jitter. 

To detect change at each pixel, the absolute values of the difference between the current frame 

and the mean vectors are calculated.  It is assumed that any values of change less than two 

standard deviations from the mean are noise and are therefore ignored.  Beyond two deviations, 

the new observation is assumed to be a significant change from the background.   It is this value 

beyond the noise range that we want to keep for change detection.  Therefore, two standard 

deviations are subtracted from the amount of change at each bin. Subtracting the standard 

deviation, instead of the more common operation of dividing the change value by the standard 

deviation, has the added benefit of not possibly causing a divide by zero error.   

The differencing method is performed on the 𝐶𝑏
′ , 𝐶𝑟

′ , 𝐶𝑔
′  and 𝐻𝑆𝑣  histogram images to 

compute 

𝐶 = 2 

∆𝑕
𝐶𝑏

′
 𝑥, 𝑦, 𝑖 = 0 ∨   𝜇𝑕

𝐶𝑏
′
 𝑥, 𝑦, 𝑖 − 𝑕𝐶𝑏

′  𝑥, 𝑦, 𝑖  − 𝐶 ∗ 𝜎𝑕
𝐶𝑏

′
 𝑥, 𝑦, 𝑖  , 

∆𝑕
𝐶𝑟

′
 𝑥, 𝑦, 𝑖 = 0 ∨   𝜇𝑕

𝐶𝑟
′
 𝑥, 𝑦, 𝑖 − 𝑕𝐶𝑟

′  𝑥, 𝑦, 𝑖  − 𝐶 ∗ 𝜎𝑕
𝐶𝑟

′
 𝑥, 𝑦, 𝑖  , 

∆𝑕
𝐶𝑔

′
 𝑥, 𝑦, 𝑖 = 0 ∨   𝜇𝑕

𝐶𝑔
′
 𝑥, 𝑦, 𝑖 − 𝑕𝐶𝑔

′  𝑥, 𝑦, 𝑖  − 𝐶 ∗ 𝜎𝑕
𝐶𝑔

′
 𝑥, 𝑦, 𝑖  , 

∆𝑕𝐻𝑆𝑣 
 𝑥, 𝑦, 𝑖 = 0 ∨   𝜇𝑕𝐻𝑆𝑣 

 𝑥, 𝑦, 𝑖 − 𝑕𝐻𝑆𝑣  𝑥, 𝑦, 𝑖  − 𝐶 ∗ 𝜎𝐻𝑆𝑣   𝑥, 𝑦, 𝑖  . 

 

These differences are summed across the eight histogram bins to find the total change at each 

pixel of the image  

∆𝑕
𝐶𝑏

′
′  𝑥, 𝑦 =  ∆𝑕

𝐶𝑏
′
 𝑥, 𝑦, 𝑖 7

𝑖=0 , 

∆𝑕
𝐶𝑟

′
′  𝑥, 𝑦 =  ∆𝑕

𝐶𝑟
′
 𝑥, 𝑦, 𝑖 7

𝑖=0 , 



  

∆𝑕
𝐶𝑔

′
′  𝑥, 𝑦 =  ∆𝑕

𝐶𝑔
′
 𝑥, 𝑦, 𝑖 7

𝑖=0 , 

∆𝑕𝐻𝑆𝑣 

′  𝑥, 𝑦 =  ∆𝑕𝐻𝑆𝑣 
 𝑥, 𝑦, 𝑖 7

𝑖=0 , 
 

where (x,y) is the pixel location, i is the ith  histogram bin, and 𝑕𝐶𝑆  is the histogram of color space 

CS.   

At every pixel in each color space, the change is a single scalar and the resulting picture can be 

thought of as a difference image.  The four difference images for a single frame are shown in 

Fig. 3. 

 
                                   (a)                                                                           (b)                                                                          (c) 

 
                                    (d)                                                                          (e)                                                                         (f) 
Fig. 3. Images representing the amount of change according to each texture and color descriptors. (a) Background image (b) Test image (c) 𝐻𝑆𝑣 

features Diff Image (d) 𝐶𝑏
′  features Diff Image (e) 𝐶𝑟

′  features Diff Image (f) 𝐶𝑔
′  features Diff Image 

 

The fusion of the changes of the 𝐶𝑏
′ , 𝐶𝑟

′  and 𝐶𝑔
′  components require special care because in this 

color space, changes to secondary colors; cyan, magenta and yellow; register in multiple color 

planes.  Hence, their responses to change are smaller in each plane than for primary colors.  A 

Yager union [18] is used to fuse the texture changes.  The operator is defined as 

∆𝑕
𝐶𝑏𝑟𝑔

′
′  𝑥, 𝑦 = 1 ∧  ∆𝑕

𝐶𝑏
′

′  𝑥, 𝑦 𝑤 + ∆𝑕
𝐶𝑟

′
′  𝑥, 𝑦 𝑤 + ∆𝑕

𝐶𝑔
′

′  𝑥, 𝑦 𝑤 

1

𝑤
. 

The variable 𝑤 is a tunable parameter, which can be manually assigned or learned from 



  

training data, which set to 2 here.  Values of ∆𝑕
𝐶𝑏𝑟𝑔

′
′  𝑥, 𝑦  above a given threshold, 0.4, represent 

pixels that differ from the background. 

𝜑𝑕
𝐶𝑏𝑟𝑔

′
 𝑥, 𝑦 =  

1 ∆𝑕
𝐶𝑏𝑟𝑔

′
′  𝑥, 𝑦 >  0.4

0 𝑒𝑙𝑠𝑒

  

 

The result of this fusion is a binary image, where the pixels along the contour of the person and 

areas of large textural change are classified as foreground.  Multiple stages of change detection 

with respect to 𝐶𝑏𝑟𝑔
′  𝑥, 𝑦  are shown in Fig. 4. 

 
                                                     (a)                                                                                                    (b) 

 
                                                        (c)                                                                                                (d) 

Fig. 4.  Change detection in texture features. (a) A background image of the scene.  (b) An image of the scene with a person in the foreground.  
(c) Change detection confidence using the texture descriptors.  (d) The pixels of image (c) above the threshold of .4 with morphological and 

logical post processing operations. 
 

Values of the color descriptor change, ∆𝑕𝐻𝑆𝑣

′ , above a given threshold, 2, represent pixels of 



  

color change.  These pixels are defined as  

𝜑𝑕𝐻𝑆𝑣
 𝑥, 𝑦 =  

1 ∆𝑕𝐻𝑆𝑣

′  𝑥, 𝑦 > 2

0 𝑒𝑙𝑠𝑒
  

Fig. 5 shows the change detected from the 𝐻𝑆𝑣 features.  Unfortunately, color change detection 

in 𝐻𝑆𝑣 is vulnerable to shadows cast by moving objects, as is shown in Fig. 5a.  This problem 

with shadows is again due to the correlation between saturation and luma.  It is therefore 

necessary to detect and remove shadows. 

The shadow detection algorithm used in this paper is an extension to an earlier model proposed 

by Blauensteiner et al., [6].   In [6], circular statistics are built from hue and saturation mapped 

into a two dimensional space.  If the luma, 𝑌′, drops by a reasonable amount from the mean 

luma, 𝜇𝑌′ , while the hue and saturation change very little, a shadow is detected.  For this paper, 

an extension to this algorithm was made using our 𝐻𝑆𝑣𝑉 space.   

The first shadow condition is based on change in luma.  When a background pixel goes into 

shadow, the luma of that pixel is expected to decrease.  To be considered shadow, the luma of a 

pixel must drop below 95% of its average value. 

The second condition is based on the chroma of the pixel.  When a surface is shadowed, the 

colors of the pixels in that area are nearly unchanged.   Therefore, to determine pixel color 

change, the mean location, 𝜇𝐻𝑆𝑣𝑉 , is determined for each pixel in 𝐻𝑆𝑣𝑉 space and updated as 

part of the background model.  As brightness decreases, the color of each pixel typically moves 

along an approximately linear path toward the origin in 𝐻𝑆𝑣𝑉 space.  Similarity is determined 

using the dot product of the angle between a pixel’s current location 𝑓𝐻𝑆𝑣𝑉  𝑥, 𝑦  and its mean 

location  𝜇𝐻𝑆𝑣𝑉  𝑥, 𝑦 , 

𝑑 𝑥, 𝑦 =  
𝑓𝐻𝑆𝑣𝑉  𝑥, 𝑦 ⋅ 𝜇𝐻𝑆𝑣𝑉  𝑥, 𝑦 

 𝑓𝐻𝑆𝑣𝑉  𝑥, 𝑦   𝜇𝐻𝑆𝑣𝑉  𝑥, 𝑦  
 

 



  

If 𝑑 𝑥, 𝑦  is greater than .99, the pixel’s color is assumed to be unchanged.  The threshold of .99 

was found empirically to work well in most lighting conditions and coincides with an eight 

degree angle in 𝐻𝑆𝑣𝑉 space.   

 As mentioned previously, when luma is low, color information becomes unreliable.  Therefore, 

the final condition is that the luma of each pixel must be above .2 to be considered to be a 

shadow.  This also handles a special case of black areas moving through the scene.  Without this 

condition all new black areas would be discarded as shadow and never selected as foreground. 

If the pixel’s color is unchanged, its luma has decreased, and its luma is not too dark, the pixel 

is classified as being in shadow.  The output of shadow detection is an image 𝐿 𝑥, 𝑦  defined as 

𝐿 𝑥, 𝑦 =  
1 𝑑 𝑥, 𝑦 > .99 𝑎𝑛𝑑 𝑌 𝑥, 𝑦 <  .95𝜇𝑌 𝑥, 𝑦  𝑎𝑛𝑑 𝑌 𝑥, 𝑦 > .2 
0 𝑒𝑙𝑠𝑒

  

 

The color change detection image is  

𝜑𝑕𝐻𝑆𝑣

′  𝑥, 𝑦 = 𝜑𝑕𝐻𝑆𝑣
 𝑥, 𝑦  ∧  1 − 𝐿 𝑥, 𝑦  . 

 

The final step is the fusion of texture and color difference which is performed using a union 

operator.  This image, 𝐹 𝑥, 𝑦 , represents the change detected from both texture and color. 

𝐹 𝑥, 𝑦 =  𝜑𝐶𝑏𝑟𝑔
′  𝑥, 𝑦 ∨ 𝜑𝐻𝑆𝑣

 𝑥, 𝑦   

 
Because the contour of the person often has segments missing from change detection, the fused 

image 𝐹 𝑥, 𝑦  is morphologically dilated by a circular kernel of radius 3, 𝑘3.  Regions of pixels 

with value zero surrounded by pixels of value one are then filled with ones.  The image is then 

morphologically eroded with a circular kernel of radius 6, 𝑘6, to eliminate noise points.  One 

final morphological dilation with the 𝑘3 kernel is performed to return the silhouettes to their 

proper size. The operation is defined as 



  

𝑂 𝑥, 𝑦 =   𝑓𝑖𝑙𝑙 𝐹 𝑥, 𝑦 ⊕ 𝑘3  ⊝ 𝑘6 ⊕ 𝑘3. 
 

The shadow removal process is shown visually in Fig. 5. 

 

 
                                                     (a)                                                                                              (b) 

 
                                                     (c)                                                                                             (d) 
Fig. 5.  Multiple stages of change detection using color descriptors.  (a) The confidence of change detection in color space.  Notice that shadows 
are detected as change.  (b)  Pixels that have registered a change above the threshold of 2.  (c) Shadows in the scene.  (d)  The change with respect 
to color descriptors after removing shadows and performing morphological operations.   Although the output does not match the silhouette 
closely, it fills in parts of the silhouette missed by the texture descriptor.  
 

6. BACKGROUND UPDATE 

The background, even in a constrained indoor environment, is not constant.  Changes in 

lighting or manipulation of objects in the scene must be taken into account for a robust system.  

As mentioned in the introduction, well known algorithms such as Mixtures of Gaussians and 

Wallflower have been developed to handle background adaptation.  Because our eldercare 



  

tracking system is a conglomeration of many smaller systems, algorithms with greater 

complexity are too computationally expensive to run in real time.  It was therefore decided to 

update just a single mean and standard deviation for each feature dimension at each background 

pixel. 

It is assumed that regions of change correspond to moved objects, or a person.  Because the 

living quarters of the eldercare environment house only a single person, it is assumed that there 

will be at most only one person in the scene at any given time.  Furthermore, our supposition is 

that the person is larger than any object moved in the scene.  Therefore, the largest foreground 

region is recognized as the person.  That area is then dilated by six pixels and is not used in the 

background update.  All other pixels are used to update the background model. 

An alpha update similar to that used in [15] is used to update the background model.  It is too 

expensive to store and recompute the 32 means and standard deviations otherwise.  The mean 

values are updated using a linear interpolation of the old value and new value. 

𝜇𝑕
𝐶𝑏

′
 𝑥, 𝑦, 𝑖 =  1 − 𝛼 𝜇𝑕

𝐶𝑏
′
 𝑥, 𝑦, 𝑖 +∝ 𝑕𝐶𝑏

′  𝑥, 𝑦, 𝑖  

𝜇𝑕
𝐶𝑟

′
 𝑥, 𝑦, 𝑖 =  1 − 𝛼 𝜇𝑕

𝐶𝑟
′
 𝑥, 𝑦, 𝑖 +∝ 𝑕𝐶𝑟

′  𝑥, 𝑦, 𝑖  

𝜇𝑕
𝐶𝑔

′
 𝑥, 𝑦, 𝑖 =  1 − 𝛼 𝜇𝑕

𝐶𝑔
′
 𝑥, 𝑦, 𝑖 +∝ 𝑕𝐶𝑔

′  𝑥, 𝑦, 𝑖  

𝜇𝑕𝐻𝑆𝑣 
 𝑥, 𝑦, 𝑖 =  1 − 𝛼 𝜇𝑕𝐻𝑆𝑣 

 𝑥, 𝑦, 𝑖 +∝ 𝑕𝐻𝑆𝑣   𝑥, 𝑦, 𝑖  

Standard deviations are updated in a similar fashion using the absolute difference between the 

current value and the mean at each dimension.  

𝜎𝑕
𝐶𝑏

′
 𝑥, 𝑦, 𝑖 =  1 − 𝛼 𝜎𝑕

𝐶𝑏
′
 𝑥, 𝑦, 𝑖 +∝  𝑕𝐶𝑏

′  𝑥, 𝑦, 𝑖 − 𝜇𝑕
𝐶𝑏

′
 𝑥, 𝑦, 𝑖   

𝜎𝑕
𝐶𝑟

′
 𝑥, 𝑦, 𝑖 =  1 − 𝛼 𝜎𝑕

𝐶𝑟
′
 𝑥, 𝑦, 𝑖 +∝  𝑕𝐶𝑟

′  𝑥, 𝑦, 𝑖 − 𝜇𝑕
𝐶𝑟

′
 𝑥, 𝑦, 𝑖   

𝜎𝑕
𝐶𝑔

′
 𝑥, 𝑦, 𝑖 =  1 − 𝛼 𝜎𝑕

𝐶𝑔
′
 𝑥, 𝑦, 𝑖 +∝  𝑕𝐶𝑔

′  𝑥, 𝑦, 𝑖 − 𝜇𝑕
𝐶𝑔

′
 𝑥, 𝑦, 𝑖   

𝜎𝑕𝐻𝑆𝑣 
 𝑥, 𝑦, 𝑖 =  1 − 𝛼 𝜎𝑕𝐻𝑆𝑣 

 𝑥, 𝑦, 𝑖 +∝  𝑕𝐻𝑆𝑣   𝑥, 𝑦, 𝑖 − 𝜇𝑕𝐻𝑆𝑣 
 𝑥, 𝑦, 𝑖   



  

Alpha determines the rate at which the system updates the background model.  This parameter 

is associated with the frame rate of the camera and a user desired update rate for the system.  We 

use an alpha of .01, for a system that captures images at a rate of 5 frames per second. 

 

7. RESULTS 

In order to calculate the accuracy of the proposed foreground detection system, the extracted 

silhouettes are compared to three hand-segmented ground truth sequences.  The backgrounds in 

these sequences include a range of colors and intensities that remain static throughout each 

sequence.  The clothing worn by the subjects demonstrate the need to use both texture and color 

features for change detection.  The beginning of each sequence contains only the static 

background with no humans.  The subject then walks to a specified location in the room and 

performs a random action.  The subject then begins walking again. 

Test sequence one consists of 148 images of a primarily white and yellow colored background.  

The subject is wearing a solid blue shirt and yellow-green shorts.  Fig. 6 illustrates three frames 

from this sequence with the original image, the hand segmented silhouettes and the extracted 

silhouettes. In this sequence, the system correctly classified 99% of the hand segmented 

foreground.  Also, only 2% of the pixels classified as foreground by the system were considered 

background by hand segmentation. 

 



  

  
                                    (a)                                                              (b)                                                               (c) 

  
                                    (d)                                                              (e)                                                             (f) 

 
                                     (g)                                                            (h)                                                                (i) 

Fig. 6. A test sequence of images. (a), (b) and (c) are three unprocessed images from the test sequence.  (d), (e) and (f) are the hand-segmented 
silhouettes of the person.  (g), (h) and (i) are the three silhouette images output from this system. 

 

The second test sequence has the same background as the first, but with a different subject.  

This sequence contains 192 frames.  The subject in this sequence wears a striped shirt and blue 

jeans.  Fig. 7 again shows three frames of the sequence.  The system correctly classifies 98% of 

the hand segmented foreground, while only incorrectly classifying 1% of the background. 

 



  

 
                                  (a)                                                               (b)                                                                (c) 

 
                                   (d)                                                              (e)                                                                  (f) 

 
                                  (g)                                                                 (h)                                                                  (i) 

Fig. 7. A test sequence of images. (a), (b) and (c) are three unprocessed images from the test sequence.  (d), (e) and (f) are the hand-segmented 
silhouettes of the person.  (g), (h) and (i) are the three silhouette images output from this system. 

 

The final sequence has the same flat colored wall, but hard edges on the floor.  The subject 

wears a white shirt and blue jeans.  This 70 frame sequence stresses the system’s ability to 

segment the subject in a scene with little color information.  Fig. 8 shows three representative 

frames from this sequence.  Fig. 8 (h) shows the effect of reflection on silhouette segmentation as 

the subject is reflected off the floor.  Because the reflection has color information, it is not 

considered shadow and is therefore part of the foreground segmentation.  Even with this 

difficulty, 99% of the hand segmented foreground is found, while only 1% of the foreground 

classification is incorrect. 



  

 
                                    (a)                                                                           (b)                                                                         (c) 

 
                                     (d)                                                                          (e)                                                                          (f) 

 
                                     (g)                                                                          (h)                                                                          (i) 

Fig. 8. A test sequence that stresses change detection with little color information. (a), (b) and (c) are three unprocessed images from the test 
sequence.  (d), (e) and (f) are the hand-segmented silhouettes of the person.  (g), (h) and (i) are the three silhouette images output from this 

system. 
 

Over these three sequences, this system correctly classified 99% of the hand segmented 

foreground pixels.  In addition, 98% of the areas classified as foreground by this system was 

segmented as foreground by a human.  This level of accuracy makes the system suitable for 

many higher level intelligence processes such as human activity analysis. 

The same three sequences were run through the Gaussian Mixture Model (GMM) defined in 

[15].  This system models the background as a misture of Gaussians at each pixel and classifies 

change, i.e. foreground, when a new pixel does not reside within a user specified number of 

standard deviations from one of the K Gaussians.  A new Gaussian distribution is built for each 



  

new pixel that is classified as foreground. 

 For testing, we used four models per pixel and three standard deviations as the model for the 

underlying pixel values.  Pixel values outside of three standard deviations from all Gaussians are 

classified as change.  The GMM was tested separately for R’G’B’ and Cb’Cr’Cg’ color spaces.  

The best results were found using the Cb’Cr’Cg’ values.  As displayed in table I, significantly 

higher accuracies were found using the system defined in this paper to the GMM system.  Fig. 9 

displays the results of the GMM and the system defined in this paper.   

TABLE I 
ACCURACY OF THE SYSTEM DESCRIBED IN THIS PAPER AND A GAUSSIAN MIXTURE MODEL. 

 
 Current System GMM System 

(Cb’Cr’Cg’) 
GMM System (R’G’B’) 

Percentage 
of 

Foreground 
Pixels 
Found 

Percentage 
of Pixels 

Incorrectly 
Classified 

as 
Foreground  

Percentage 
of 

Foreground 
Pixels 
Found 

Percentage 
of Pixels 

Incorrectly 
Classified 

as 
Foreground 

Percentage 
of 

Foreground 
Pixels 
Found 

Percentage 
of Pixels 

Incorrectly 
Classified 

as 
Foreground 

Sequence 
1 

99% 2% 77% 8% 76% 9% 

Sequence 
2 

98% 1% 85% 3% 80% 5% 

Sequence 
3 

99% 1% 63% 1% 70% 2% 

Total 99% 2% 81% 5% 78% 6% 
 

 

 

 

 

 



  

 

 
Fig. 9. Several images comparing the output of the Gaussian Mixture Model using Cb’Cr’Cg’ color space, (top images), and those from the 

system defined in this paper, (bottom images). 
 

Several more sequences have been collected and processed but not hand segmented.  These 

sequences were collected in a scene that modeled a home setting.  The environment includes a 

couch, two chairs, two tables, a rug and a lamp.  There are also two blue mats on the floor for fall 

data collection.  This furniture consists of flat colors, colored textured and monochromatic 

textures.  Several images from one such sequence are shown in Fig. 10.  The same thresholds and 

constants were used to process this sequence as were used on the hand-segmented data.  These 

parameters could have been fine-tuned for this scene, but this sequence shows the robustness of 

this system even using a non-optimal set of thresholds.  These images further illustrate the 

accuracy and reliability of the system across multiple background textures while removing 

shadows.  Fig. 10 shows a scene using multiple cameras.  In [2] and [3] we constructed a three-

dimensional representation of these images to lower the false alarm rate and describe higher level 

activity. 

A repository of image sequences, including the hand segmented sequences used in this paper, 

can be found at http://cirl.missouri.edu/sequences. 

 



  

 

 

 

 

 
Fig. 10.  Sample images from a sequence taken in a home-like setting.  The images on the left are from one camera while those on the right are 

from another.  By correlating the two points of view, many false alarms can be removed from three dimensional space. 
 

  

 There are some situations where the human goes undetected by this system.  Fig. 11 produces a 

sample.  These most frequently occur when the foreground has a highly similar color to the 

background.  If there is no texture, and edges are undetectable then parts of the body are not 



  

filled in.  Also, foreground can be falsely classified as shadow when its intensity lower than that 

of the background color. 

 

 

Fig. 11.  Images displaying the shortcomings of this system.  The human in the left images is wearing a shirt that has a darker, but similar color to 
the background, and is falsely detected as shadow. 

 

8. CONCLUSION 

Silhouette segmentation in complex and dynamic environments requires multiple computer 

vision algorithms running in parallel that process scene information in different ways.  Fused 

color and texture features generate better silhouettes and avoid many conditions where 

segmented body regions would be otherwise disconnected.  This results in improved features 

extracted from a better silhouette, and is being used for tracking humans for fall detection using 

higher level intelligence. 

  Exceptional correlation was found between this system’s output and hand segmented ground 

truth image sequences.  The classification of this system was significantly more accurate than the 

Gaussian Mixture Model.  This paper also demonstrated results for longer sequences in a 

complex environment that modeled a home setting.  Though hand segmentation was not 

performed on these sequences, output images were displayed at various parts of these sequences 

to show the qualitative accuracy of both the classification model and the background update 

model. 

The procedure defined in this paper has shown exceptional accuracies in both classification 



  

and background update for controlled indoor environments.  For more complex changes to the 

background, extreme lighting changes, large object movement, and multiple objet tracking; 

higher level intelligent algorithms are needed to make more complex decisions.  We plan on 

addressing these topics through object recognition and 3D modeling of the environment. 
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