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Abstract. An investigation of a new, inexpensive depth camera device, the Microsoft Kinect, for passive gait assessment in 

home environments is presented. In order to allow older adults to safely continue living in independent settings as they age, the 

ability to assess their risk of falling, along with detecting the early onset of illness and functional decline, is essential. Daily 

measurements of temporal and spatial gait parameters would greatly facilitate such an assessment. Ideally, these measurements 

would be obtained passively, in normal daily activity, without the need for wearable devices or expensive equipment. In this 

work, the use of the inexpensive Microsoft Kinect for obtaining measurements of temporal and spatial gait parameters is eva-

luated against an existing web-camera based system, along with a Vicon marker-based motion capture system for ground truth. 

Techniques for extracting gait parameters from the Kinect data are described, as well as the potential advantages of the Kinect 

over the web-camera system for passive, in-home gait assessment.  
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1.  Introduction 

To allow older adults to continue living longer in 

independent settings, and thus reduce the need for 

expensive care facilities, low-cost systems are needed 

to detect not only adverse events such as falls but to 

assess the risk of such events, in addition to the early 

onset of illness and functional decline. Continuous, 

ongoing assessments of physical function would help 

older adults live more safely in independent settings, 

while also facilitating targeted medical interventions 

when needed. Ideally, such measurements would be 

obtained passively, in the course of normal daily ac-

tivity [7]. This work focuses on developing a robust, 

low-cost, vision based monitoring system for measur-

ing gait in a home environment, with the broader 

goals of assessing fall risk and detecting the early 

onset of illness and functional decline.  

Research has shown the importance of measuring 

a person’s gait [16] and that the parameters which 

describe locomotion are indispensible in the diagno-

sis of frailty and fall risk [29]. Studies have identified 

stride-to-stride variability as a predictor of falls 

[14,22], suggested that gait velocity may be predic-

tive of adverse events in well functioning older adults 

[25], and have shown gait velocity slows prior to 

cognitive impairment [5].   

Vision-based monitoring systems have the resolu-

tion needed to yield the detailed measurements of 

physical function used for typical fall risk assessment 

protocols, early illness detection, etc., passively, in 

the home environment on a continuous basis. Fur-

thermore, research has shown that the privacy con-

cerns of older adults to video-based monitoring sys-

tems can be alleviated through appropriate handling 

and processing of the video data, e.g., in the form of 

silhouettes [8]. 

Recently, Microsoft has released a new, inexpen-

sive sensor device, called the Kinect, to allow con-

troller free game play on their Xbox system. The de-

vice uses a pattern of actively emitted infrared light 

to produce a depth image. That is, the value of each 

pixel in the image depends on the distance from the 

device of what is being viewed. Furthermore, the 

depth image is invariant to visible lighting. This 

technology allows for a three-dimensional (3D) re-

presentation using a single, relatively inexpensive 

Kinect sensor. Additionally, this depth camera tech-



nology offers a number of potential benefits for low-

cost, vision based monitoring systems. 

This paper presents a preliminary investigation, 

first described in [32], along with a more detailed 

evaluation of the Kinect as a sensor for passive, in-

home gait measurement. First, a brief discussion of 

related work is presented. Next, techniques for ac-

quiring spatial and temporal gait parameters from the 

depth data of the Kinect are described, along with a 

comparison of the measurements obtained from the 

Kinect to those obtained from an existing web-

camera based system, and a Vicon marker-based mo-

tion capture system. Potential advantages of the Ki-

nect over traditional camera systems are also pre-

sented. Finally, the major points of this paper are 

discussed along with future work. 

2.  Related Work 

Recent research in activity monitoring of older 

adults has focused on the use of passive infrared 

(PIR) motion sensor suites in the home [15,34]. 

These sensor suites yield information about the daily 

activity levels of monitored subjects, and arrays of 

such sensors have been used to obtain velocity mea-

surements on a continuous basis in home settings 

[2,11]. While such systems do not raise privacy con-

cerns among older adults, they typically do not, due 

to the coarse nature of the PIR sensors, produce mea-

surements of the detail necessary for the assessment 

of fall risk, specifically, spatial and temporal gait 

parameters beyond walking speed (e.g., step time, 

step length, gait symmetry), timed up and go (TUG) 

time, sit to stand time, etc [10]. Existing systems for 

capturing such measurements are typically wearable, 

accelerometer-based devices, expensive gait or mark-

er-based motion capture systems, or direct assess-

ment by a health care professional (typically, with a 

stop watch) [16]. 

Wearable accelerometer-based devices for obtain-

ing detailed measurements of physical activity, spe-

cifically gait parameters, is an area that has been the 

focus of much research [9]. Efforts have even in-

cluded utilizing accelerometers in existing smart de-

vices, which individuals may already own and poten-

tially carry with them. However, many elderly adults 

are reluctant to use wearable devices because they 

consider them to be invasive or inconvenient, espe-

cially during times when they are not feeling well [7]. 

Furthermore, wearable devices generally require ac-

tive involvement on the part of the user for putting 

the device on, taking it off, charging batteries, etc. 

Although wearable devices offer the distinct advan-

tage of measurements outside the home, they may not 

be as reliable for daily monitoring and assessment as 

passive, environmentally mounted sensors in the 

home. 

Human motion analysis using vision technology is 

another widely researched area that has been applied 

to gait assessment, with two basic approaches: mark-

er and marker-less. Marker-based systems detect 

markers attached to a subject’s body in multiple cam-

era views. Given the location of the markers in dif-

ferent camera views, the 3D position of the marker 

can be obtained. The use of markers helps to yield 

highly accurate and robust measurements of a per-

son’s motion. Obviously, however, marker-based 

motion capture systems are not practical for in-home, 

continuous monitoring. 

A large amount of work has been done regarding 

marker-less video-based motion capture systems. 

Marker-less video based motion capture systems 

generally work by extracting the silhouette of the 

subject in multiple, calibrated camera views, project-

ing the silhouette from each of the views into a dis-

cretized volume space, and fitting a skeletal model to 

the intersection formed by the projection of the sil-

houettes in the discretized volume space [4,24]. Such 

systems have been shown to yield excellent results. 

However, they are typically expensive, computation-

ally intensive, require a controlled environment, and 

require high quality and/or a large number of cameras, 

attributes which limit their suitability for in-home 

activity monitoring.   

A number of researchers have looked at using sys-

tems composed of a single or multiple cameras for 

monitoring purposes in non-laboratory settings 

[13,17,19,20,23,27,35,36]. For example, in [13], a 

single camera system is developed that can identify 

and track people in outdoor environments. The sys-

tem can estimate body posture (e.g., standing, sitting, 

lying, etc.) as well as track six primary body parts: 

head, torso, feet, and hands. In [36], a single camera 

system is used to estimate the location of people in an 

indoor environment, along with moving speed. This 

information is then converted into Activity of Daily 

Living (ADL) statistics for meaningful summariza-

tions of activity. Lastly, in [17], researchers make use 

of a time-of-flight (TOF) based depth camera to iden-

tify and track people in a living room setting. The 

height of the person is used to classify their activity 

as standing, sitting, or lying. None of these systems 

specifically looked at obtaining gait parameters in the 

home. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Web-camera system. Two calibrated cameras positioned orthogonally in the environment capture images of the scene. Silhouettes are 

extracted from the captured images. The silhouettes are projected into a discretized volume space. The intersection of the silhouettes in vo-

lume space forms a three-dimensional (3D) representation of the person for tracking and analysis. 

3.  Systems 

3.1. Vicon 

The Vicon system is a highly accurate marker 

based motion capture system used in a variety of 

animation, life sciences, and engineering applications 

[26]. The system outputs 3D coordinates of detected 

markers at 100 frames per second. For this work, it 

serves to provide ground truth data for comparison 

purposes. 

3.2. Web-Camera 

The web-camera based system, outlined in Figure 

1, consists of two inexpensive web-cameras, posi-

tioned roughly orthogonal, monitoring the environ-

ment. Silhouettes are extracted from captured images 

using a background subtraction technique based on 

color and texture features.  Details of the background 

subtraction algorithm for extracting silhouettes are 

described in [21], while the procedure for updating 

the background models and dealing with other issues 

encountered in dynamic, noisy environments is de-

scribed in [31]. The updating procedure makes use of 

both pixel (2D) and voxel (3D) data.  

Briefly, the system operates as follows. First, in-

trinsic and extrinsic calibration parameters for both 

cameras are obtained a priori, allowing for a three-

dimensional representation to be formed in a discre-

tized volume space as the intersection of the projec-

tion of the silhouettes from each camera. Typically, 

the space is discretized into one inch (2.54 cm) non-

overlapping, cubic elements (voxels). The system 

runs real-time at five to fifteen frames per second 

depending on available computing resources. For the 



experiments collected in this work, the system was 

run at five frames per second. 

The web-camera system has been evaluated for fall 

detection, gait measurement, body sway measure-

ment, and sit-to-stand measurement [1,3,30,33] with 

good results. The goal is to develop a passive, in-

home, low cost, activity monitoring system for elder-

ly adults that is capable of both detecting falls and 

helping to assess fall risk through the extraction of 

various physical parameters, including gait. 

Currently, the system has been deployed in five 

apartments of an elderly independent living facility 

with plans to deploy five additional systems. The 

deployed systems are actively extracting walking 

sequences, automatically, in real-time. The systems 

will be evaluated over a two year period. 

3.3. Kinect 

The Kinect [28], Figure 2 (a), released by Micro-

soft in North America on November 4, 2010, was 

designed to allow controller-free game play on the 

Microsoft Xbox. The device makes use of technology 

developed by the Israeli company PrimeSense, and 

contains both an RGB camera, and an infrared (IR) 

sensitive camera, from which a depth image can be 

produced based on a pattern of projected infrared 

light. This pattern is shown in Figure 2 (b) projected 

onto a recliner chair.  

The depth data returned from the device (at 30 

frames per second) is an 11-bit 640x480 image which 

is invariant to visible lighting. The precision of the 

distance measurment for each pixel is dependent on 

the distance from the Kinect, with the precision de-

creasing from approximately one centimeter at two 

meters to approximately ten centimeters at six me-

ters. The minimum range of the device is approx-

imately one meter. For use with the Microsoft Xbox, 

it is recommended that the user be approximately two 

meters from the device. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. (a) Microsoft Kinect sensor. (b) Raw image from infrared (IR) camera of Kinect showing actively emitted IR pattern as projected on a 

recliner chair. (c) Resulting depth image. Darker pixels are closer to the device, lighter pixels are further away. Black pixels indicate no depth 
value was returned. 

(b) 

(c) 

(a) 

IR Emitter IR Camera 

RGB Camera 

Fig. 3. Positioning of web-cameras, Kinects, and walking path in 

test environment. Walking path is approximately 17 ft. (5.2 m) in 

length. Lines show field of view for each device.  
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When used with the Xbox, the Kinect allows 3D 

motion tracking using a skeletal model, gesture rec-

ognition, facial recognition, and voice recognition. 

Following its release, Linux and windows drivers 

were developed, and the Kinect has been used for a 

variety of purposes from entertainment to robotics 

[28].  

3.4. Layout 

For the experiments conducted in this work two 

web-cameras (forming the web-camera based system) 

and two Kinects (operating individually) were posi-

tioned in a laboratory environment, alongside a Vi-

con motion capture system. Figure 3 shows the ap-

proximate placement of the web-cameras, Kinects, 

and the location of the walking path in the test envi-

ronment. The cameras and Kinects were positioned 

approximately eight feet (2.4m) off the ground, and 

the Kinects were angled downward approximately 20 

degrees from horizontal. One Kinect was placed in-

line with the walking path while the other was placed 

orthogonal in order to evaluate the impact of the posi-

tioning on the accuracy of the extracted gait parame-

ters. 

4. Methodology 

In this section, the techniques used to extract the 

gait parameters of walking speed, stride time, and 

stride length from the 3D depth data returned by a 

single Kinect are described. For the purpose of evalu-

ation, the assumption has been made that there is 

only one person in the scene at a time, and that the 

environment is stationary. Thus, the 3D point cloud 

obtained from the Kinect is for a single person. For 

use in a real world, dynamic environment, a high-

level tracking algorithm and model updating proce-

dure would be necessary to achieve this, analogous to 

what has been done with the web-camera system 

[31]. Finally, the extrinsic parameters of the Kinect 

with respect to the room have been computed, thus 

allowing accurate estimation of height with respect to 

the floor.  

For the web-camera based system, an existing al-

gorithm was used to extract gait parameters [30]. In 

short, the algorithm attempts to identify footfall loca-

tions for a walking sequence by finding the positions 

at which the feet are stationary. Given the locations 

of the footfalls, and the times at which they occurred, 

gait parameters can then be computed.  

4.1. Kinect – Calibration 

The first step of obtaining accurate spatial parame-

ters from the Kinect is calibration. This consists of 

two steps. First, as with traditional cameras, intrinsic, 

distortion, and stereo parameters for the IR and RGB 

cameras on the Kinect are estimated using a standard 

checkerboard calibration pattern and supplemental IR 

backlighting. 

Second, calibration of the depth values returned 

from the Kinect is performed. The depth data re-

turned from the Kinect must be transformed to obtain 

usable and accurate distances. For this work, the fol-

lowing equations, based on [18], were used to trans-

form a raw Kinect depth value, D, an integer value 

typically in the range [660, 1065], for a given pixel, 

(x, y), to a distance, d: 
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where x’ and y’ are the normalized pixel coordinates 

computed using the intrinsic and distortion parame-

ters of the IR camera. The parameters b, f, k1, k2, k3, 

and k4 are optimized over a large (~3,000) set of 

training points and the equation attempts to adjust for 

distortion effects. The training points are obtained by 

placing a large checkerboard calibration pattern in the 

environment, while moving the Kinect over a large 

range of distances and viewing angles with respect to 

the pattern. Using the known intrinsic parameters of 

the IR camera, the position of the calibration pattern 

with respect to the camera in each frame can be esti-

mated. Simultaneously, the values associated with the 

pattern in the depth image can be recorded. Follow-

ing collection of the training data, a global optimiza-

tion is performed using the CMA-ES algorithm [12]. 

Example values for the parameters {b, f, k1, k2, k3, k4} 

used to transform the raw depth values to inches are 

{14145.6, 1100.1, 0.027, -0.014, 1.161, 3.719}.  

As stated in Section 3.3, the precision of the dis-

tance measurements decreases as a function of dis-

tance. For example, using the above parameters and 



equations (1-3), a change in raw depth value from 

900 to 901 for the center image pixel (x’= y’= 0) cor-

responds to a change in distance from 70.69 to 71.04 

inches (179.55 to 180.44 cm). However, a change in 

depth value from 1060 to 1061 corresponds to a 

change in distance from 352.76 to 361.78 inches 

(896.01 to 918.92 cm).  

4.2. Kinect – Foreground Extraction 

Foreground extraction is performed on the raw 

depth images from the Kinect using a simple back-

ground subtraction algorithm. Specifically, a set of 

background training images is captured over which 

the minimum and maximum depth values for each 

pixel are stored to form a background model. 

For a new frame, each pixel is compared against 

the range stored for that pixel in the background 

model and those pixels whose raw depth value lies 

outside the range by greater than a threshold, T, are 

considered foreground. For this work, T was adjusted 

as follows based on the number of available back-

ground training frames, B: 
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As the unit of T is that of the raw depth values 

from the Kinect, the actual distance the threshold 

corresponds to will vary based on the distance from 

the Kinect. For example, given the values at the end 

of Section 4.1, T=1 corresponds to a distance of ap-

proximately 0.35 inches (0.89 cm) at two meters, but 

a distance of approximately 9.0 inches (22.9 cm) at 

nine meters. Additionally, as the number of available 

background training frames decreases, the accuracy 

of the background model generally decreases as well. 

Therefore, the threshold is raised as the number of 

background training frames decreases to help sup-

press erroneous foreground classifications. The thre-

shold levels shown in (4) were chosen based upon 

experimentation.  

Following this initial pixel classification, a block 

based filtering algorithm is run to reduce noise, and 

smoothing is applied to the depth values identified as 

foreground. Example foreground extractions are 

shown in Figure 4. Given the foreground extraction 

for a frame, and the intrinsic, extrinsic, and depth 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4. Sample foreground extraction results from Kinect #1 and #2. Left: Depth image from the Kinect. Darker pixels are closer to the 

device, lighter pixels are further away. Black pixels indicate no depth value was returned. Right: extracted foreground. 

Kinect #2 Kinect #1 



calibration parameters for the Kinect, a 3D point 

cloud representation of the person can be obtained, as 

shown in Figure 5 (a). 

This simple foreground extraction technique has 

proven to be quite robust and easily runs at the 30 

frames per second rate with which depth data is re-

ceived from the Kinect. In a dynamic, real world set-

ting, background adaptation to handle non-stationary 

environments would need to be addressed. However, 

the invariance of the depth image to changes in am-

bient lighting addresses one of the significant issues 

affecting foreground extraction on color imagery. 

Furthermore, the computation required for fore-

ground extraction on the depth data is minimal com-

pared to that required for robust foreground extrac-

tion from color imagery, where a combination of 

texture and color features must be used, along with a 

graphics processing unit (GPU) in order to operate in 

real-time [21]. 

 

4.3.  Kinect – Gait Parameters 

Much of the work with the Kinect has focused on 

human body tracking using high degree of freedom 

skeletal models. Though such techniques are quite 

powerful, and may be essential to extracting some 

physical parameters, they often suffer from problems 

of instability, especially with noisy data. As with our 

web-camera based system, to facilitate capture in 

unstructured, noisy environments with no special 

requirements of the resident, we have opted to use 

techniques not based on skeletal models for extract-

ing gait parameters.  

For the results presented in Section 5 of this work, 

walking speed was estimated for a walking sequence 

using the following procedure: 
 

1. project the centroids of the 3D point clouds 

for each frame onto the ground plane (e.g., 

dropping the vertical component of the com-

puted centroid locations); 

2. apply a moving average filter to the time se-

ries of the centroids (to smooth the data points 

 

 

Left Step Right Step 

Fig. 5. Kinect gait extraction. (a) Three dimensional point cloud of a person for a single frame during a left step (left), and right step (right). 

(b) Normalized ground plane projections of points below 20 inches (50 cm) for the frames. (c) Left and right steps are detected as local max-

ima and minima, respectively, in the correlation coefficient time series of the walking sequence.  
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(c) 
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and reduce noise); 

3. sum the frame-to-frame changes in position to 

calculate distance traveled (computed using 

the filtered centroid time series); 

4. divide distance traveled by elapsed time.  
 

For the results presented in Section 6 of this work, 

walking speed was estimated slightly differently to 

better match the definition in [6]. Specifically, the 

following procedure was used: 
 

1. project the centroids of the 3D point clouds 

for each frame onto the ground plane; 

2. apply a median and a moving average filter to 

the time series of the centroids (to smooth the 

data points and reduce noise); 

3. calculate a best fit line to represent the direc-

tion of travel for the walking sequence;  

4. compute the distance traveled for the walking 

sequence as the change in position along the 

direction of travel from beginning to end;  

5. divide distance traveled by elapsed time. 
 

This change is method, purely for agreement with the 

definition in [6], should have a minimal impact on 

the resulting accuracy as compared to the marker-

based Vicon motion capture system due to the fact 

that the same methodology used for the Kinect data is 

applied to the data from the Vicon. Furthermore, the 

introduction of the median filter in step 2 is simply to 

further reduce the effect of any noise present in the 

data. The impact of this should be minimal given the 

controlled nature of the dataset. 

For both Section 5 and 6, the number of steps and 

temporal gait parameters are estimated using only 

those 3D points with a height below 20 inches (50 

cm). In previous algorithms developed for the web-

camera based system, only those voxel elements with 

a height of 4 inches (10 cm) or less were used for 

computing these parameters. However, due to the fact 

that the foreground extraction algorithm operates on a 

depth image, points from the person that are close to 

the ground (and thus quite similar to the background 

model) are not extracted as foreground. Moreover, 

the distance at which a point is considered close to 

the ground depends on the distance from the Kinect, 

as the measurement precision decreases as the dis-

tance from the Kinect increases. Therefore, as partic-

ipants are approximately 26.6 ft (8.1 m) from a Ki-

nect at some point during each walking sequence, 

points significantly higher than the ground must be 

used in order to obtain any information about the 

lower extremities of the body. 

First, points below 20 inches (50 cm) are projected 

onto the ground plane. Second, the projection is nor-

malized by subtracting the mean, and rotating based 

on the localized walking direction. The localized 

walking direction, which is different from the direc-

tion of travel for the entire walking sequence, is 

computed for each frame in the sequence based on 

the change in position of the centroid over a window 

centered on the frame.  

Given the normalized projection, containing N 

points, the following correlation coefficient is com-

puted: 
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where xn and yn correspond to the X and Y coordi-

nates of the n
th

 point in the projection.  

The number of right and left steps for a walking 

sequence is obtained from the time series of the cor-

relation coefficient. First, the correlation coefficient 

time series is filtered using a median and a moving 

average filter, both with a window size given by: 
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where v is walking speed, f is frame rate (for Kinect, 

30 fps), and k is a constant parameter (16.6 was 

used), although it could be adapted based on the es-

timated height of the person. Finally, the signal is 

filtered using a moving average filter with a small, 

constant window size to remove any remaining minor 

local extrema. From the filtered signal, right steps are 

detected as local minima, while left steps are detected 

as local maxima.  

Following footstep extraction, a series of simple 

heuristic rules are used to verify that the extracted left 

and right footsteps occur in the correct temporal or-

der. If not, it is assumed the footstep extraction failed 

for the walking sequence.  

Figure 5 shows example normalized projections, 

5(b), along with a plot of the raw and filtered correla-

tion coefficient time series, 5(c), for one walking 

sequence. The correlation coefficient of the norma-

lized ground plane projection of 3D points below 20 

in. (50 cm) has proven to be quite robust, even at 

large distances from the Kinect. As previously stated, 

at the extreme end of the walking path shown in Fig-



ure 3, the distance from the participants to Kinect #2 

is approximately 26.6 ft (8.1 m).  

Given the locations of the local minima and max-

ima (right and left steps) in the correlation coefficient 

time series, the temporal gait parameter of stride time 

(time between successive footfalls of the same foot) 

can be computed. In addition, the spatial gait parame-

ter of stride length (distance between successive foot-

falls of the same foot) can be approximated as the 

distance moved over the period corresponding to the 

stride time. (For the results in Section 5, this distance 

is calculated using the sum of frame-to-frame 

changes in the position of the filtered centroid time 

series. For the results in Section 6, this distance is 

computed as the distance traveled along the walking 

direction.) Although this approximation of the stride 

length may yield inaccurate measurements given 

large, abrupt changes in stride, it should still capture 

the stride-to-stride variation which studies have 

shown to be predictive of falls. 

5. Preliminary Evaluation 

As a preliminary evaluation, a set of 18 walking 

sequences was collected and gait parameters were 

extracted from the three different systems. Three par-

ticipants, all members of the eldercare research team 

at the University of Missouri, were asked to walk at 

slow, normal, and fast speeds, and two walks were 

collected for each speed for each participant. The 

walking path, as shown in Figure 3, was approx-

imately 17 feet long and the number of steps per 

walking sequence varied from five to nine. In half of  

the walks the subject was moving towards Kinect 

#2, and in the other half the subject was moving 

away. (Refer to Figure 3 for a placement diagram of 

the different sensor systems.)  

5.1. Results 

Figure 6 shows plots of walking speed, average 

stride time, and average stride length for each of the 

walking sequences as computed for each of the sys-

TABLE I 
PRELIMINARY EVALUATION RESULTS 

ERROR DISTRIBUTION – Ν (µ,σ2) 

 % DIFFERENCE IN WALKING SPEED  
COMPARED TO VICON 

 Kinect #1 Kinect #2 Web-Camera 

Mean % Diff -4.1 -1.9 4.4 

Std. Deviation. 1.9 1.2 4.8 

% DIFFERENCE IN STRIDE TIME COMPARED TO VICON 

 Kinect #1 Kinect #2 Web-Camera 

Mean % Diff 1.9 0.7 -2.3 

Std. Deviation. 2.5 1.3 2.1 

% DIFFERENCE IN STRIDE LENGTH COMPARED TO VICON 

 Kinect #1 Kinect #2 Web-Camera 

Mean % Diff -1.9 -1.1 0.2 

Std. Deviation. 3.9 2.5 1.6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6. Preliminary evaluation results comparing gait measure-
ments from Kinect, web-camera, and Vicon systems.  
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tems. Table I provides a summary of the calculated 

percentage difference (mean and standard deviation) 

between each system and the Vicon for walking 

speed, average stride time, and average stride length. 

As the results in Table I show, the individual Ki-

nects yielded good performance compared to the Vi-

con and web-camera system in terms of the average 

percentage difference. The maximum absolute per-

centage difference recorded for Kinect #1 compared 

to the Vicon was 7.2%, 7.1%, and 7.2% for walking 

speed, stride time, and stride length respectively. The 

maximum absolute percentage differences recorded 

for Kinect #2 were 4.3%, 2.7%, and 6.5%.  

The results also indicate that Kinect #2 slightly 

outperformed Kinect #1 in terms of accuracy in all 

three measurements on this dataset. However, given 

all of the steps involved in computing the gait para-

meters (calibration, foreground extraction, and gait 

extraction) it is not clear how much of this difference 

in performance is due to positioning. Ultimately, a 

more controlled experiment is likely required. That 

said, these results do indicate that accurate gait mea-

surements are obtainable from both positions. This is 

significant, as the ultimate goal is to measure gait in 

dynamic, unstructured environments, where walking 

sequences may be at any arbitrary orientation with 

respect to the Kinect. 

Interestingly, when it comes to measuring the tem-

poral gait parameter of stride time, it would seem the 

web-camera system should be at a significant disad-

vantage compared to the Kinects due to its frame rate 

being six times slower. However, the results in Table 

I indicate the decreased frame rate does not cause a 

huge performance loss with respect to the Kinects. 

This is most likely a result of the differences in the 

algorithms used to extract gait information from the 

two systems; specifically, the limited ability to seg-

ment the feet of the participants in the Kinect depth 

imagery.  

Finally, on the measure of stride length, the results 

show the web-camera system outperforming the Ki-

nects. Here again, the ability of the web-camera sys-

tem to explicitly extract the footfall locations used for 

the computation of stride length, as opposed to the 

approximation based on distance traveled of the cen-

troid during the period corresponding to the stride 

time, as used for the Kinects, is the most likely factor. 

5.2. Discussion 

Although this preliminary investigation of the Ki-

nect for in home gait measurement showed both the 

accuracy of gait measurements made using the device 

and many potential benefits for fall risk assessment 

and in-home monitoring systems, there are issues 

with the Kinect, some examples of which are shown 

in Figure 7, that need further consideration. 

First, certain types of clothing fail to reflect 

enough of the emitted IR pattern back to the device to 

allow an estimate of depth at those pixels to be made 

[37]. Furthermore, the issue of subjects blending into 

the background when they are close to walls, or, in 

the case of fall detection, on the ground, is a concern 

in using the depth imagery alone for foreground seg-

mentation and tracking. Potentially, a smart fusion of 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7. Sample cases showing lack of returned values in Kinect depth image for certain articles of clothing: (b) and (c). Problem free case is 
shown in (a). Top: RGB image. Middle: Depth image. Bottom: Extracted foreground. In this work, all such items of clothing were found to 

contain some amount of spandex. 
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depth and color foreground segmentation could ad-

dress some of these issues. Finally, another potential 

drawback of the Kinect is the limited field of view, 

approximately 60 degrees. This restriction may re-

quire the use of multiple devices in many environ-

ments. 

6. Human Subject Experiment 

An additional dataset was collected, with approval 

of the Institutional Review Board (IRB) at the Uni-

versity of Missouri, to further evaluate the accuracy 

and methods for extracting gait parameters from the 

Kinect depth data. Thirteen participants were asked 

to perform eight walking sequences using the same 

setup as for the preliminary evaluation, shown in 

Figure 3. Due to technical difficulties, data was not 

collected from the Kinects for the entire duration of 

two of these walking sequences and they were dis-

carded. Thus, the dataset contains a total of 102 walk-

ing sequences. Seven of the participants were male 

and six were female, while ages spanned a range 

from late 20’s to late 60’s. Gait information from the 

Kinects is presented here, along with the Vicon sys-

tem for ground truth comparison. 

6.1. Results 

Of the thirteen participants, three of the female 

participants happened to be wearing pants that poorly 

reflected the IR pattern emitted by the Kinects (a 

problem illustrated in Figure 7). That is, beyond ap-

proximately 12 to 15 ft. from the Kinect, no mea-

surements were returned from the lower half of the 

body in the Kinect depth imagery. All three of the 

garments were black in color. However, other black 

clothing worn by a number of participants did not 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

Fig. 8. Human subject experiment results comparing gait measurements from Kinect and Vicon systems. For each graph, the sequences have 
been sorted in ascending order by the measure. 
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display this problem. During a follow-up investiga-

tion, it was determined that the garments which dis-

played this poor IR reflectance characteristic con-

tained some percentage of spandex. 

As the lack of depth data from the lower half of 

the body makes it impossible to extract the parame-

ters of stride length and stride time using the methods 

presented in Section 4.3, only walking speed is re-

ported for the 24 combined walking sequences of 

these participants, as measurements were returned 

from the upper body. Thus, stride time and length 

measurements are reported for 78 of the 102 walking 

sequences.  

As the results in Figure 8 and Table II show, the 

Kinects yielded good performance, similar to that 

presented in Table I for the preliminary evaluation, 

on this dataset as compared to the Vicon. The maxi-

mum absolute percentage difference recorded for 

Kinect #1 compared to the Vicon was 9.6%, 4.1%, 

and 11.7% for walking speed, stride time, and stride 

length respectively. The maximum absolute percen-

tage differences recorded for Kinect #2 were 4.9%, 

8.4%, and 9.4%.  

 

 

 

6.2. Discussion 

On this dataset both Kinects displayed a consistent 

negative bias on the spatial measurements due to un-

derestimating the distance traveled (and thus the 

walking speed and stride length) for the walking se-

quences compared to the Vicon. This effect was larg-

er for Kinect #1 (-6.1%) than Kinect #2 (-2.1%), and 

similar to the results obtained in the preliminary 

evaluation.  More investigation is needed to identify 

the exact cause for these biases. However, the stan-

dard deviation of the errors for each of the Kinects 

for the measure of walking speed is quite low, indi-

cating good consistency.   

For the temporal parameter of stride time no sig-

nificant biases were observed and the standard devia-

tions indicate 95% of measurements should have an 

error of 6.7% or less. 

7. Conclusion 

As the Kinect has only been available for a short 

period of time, this work focused on evaluating the 

accuracy and feasibility of using the depth data from 

the Kinect for passive, in-home gait assessment. Re-

sults showed good agreement between gait measure-

ments obtained using the Kinect, as compared to 

those from an existing web-camera based system, and 

those from a Vicon motion capture system. Further-

more, the depth imagery from the Kinect not only 

addresses a major issue in foreground extraction from 

color imagery (changing lighting conditions), but 

significantly reduces the computational requirements 

necessary for robust foreground extraction; potential-

ly further reducing the cost of an in-home vision 

based gait assessment system.  

Although the precision of the distance measure-

ments obtained from the Kinect decreases as the dis-

tance increases, this phenomenon seemed to have a 

minimal impact on the accuracy of the gait parame-

ters measured in this work, even though participants 

were up to 8.1 meters from the Kinect at some point 

during the walking sequences. The minimal impact is 

likely due to the fact that a large number (equal to the 

number of pixels classified as foreground) of mea-

surements are averaged together to obtain the centro-

id position for each frame. Furthermore, the high 

sampling rate (30 frames per second) allows signifi-

cant temporal smoothing to be applied to the result-

ing centroid time series. However, a more detailed 

TABLE II 
HUMAN SUBJECT RESULTS 

ERROR DISTRIBUTION – Ν (µ,σ2) 

 % DIFFERENCE IN WALKING SPEED  

COMPARED TO VICON 

 Kinect #1 Kinect #2 

Mean % Diff -6.1 -2.1 

Std. Deviation. 1.0 1.1 

% DIFFERENCE IN STRIDE TIME COMPARED TO VICON 

 Kinect #1 Kinect #2 

Mean % Diff 0.1 -0.1 

Std. Deviation. 3.3 2.4 

% DIFFERENCE IN STRIDE LENGTH COMPARED TO VICON 

 Kinect #1 Kinect #2 

Mean % Diff -5.1 -0.7 

Std. Deviation. 2.3 2.7 

 



investigation of the accuracy of the measurements 

from Kinect at large distances is certainly warranted. 

Issues were encountered related to certain clothing 

not sufficiently reflecting the IR pattern emitted by 

the Kinect at distances over approximately four me-

ters. For these cases, no depth values were returned 

from the Kinect, and, thus, no gait parameters could 

be computed other than walking speed. Similarly, the 

issue of foreground objects and people blending into 

the background, specifically the floor, could be prob-

lematic for fall detection using the depth imagery at 

significant distances from the Kinect. 

Future work will look at further refining the algo-

rithms for gait extraction, obtaining and evaluating 

additional physical parameters from the depth data of 

the Kinect in home environments, and will also ex-

plore a fusion of the depth and color imagery to 

achieve a fast, computationally inexpensive, and 

more robust foreground extraction than is possible 

with just the depth data or color imagery alone.  
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