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Abstract— When monitoring elders’ daily routines, it is desirable to
track significant deviations from a baseline pattern, as consecutive, aber-
rant days may foreshadow a need for medical attention. However, many
traditional, unsupervised methods for pattern classification are ill-suited
for this task, as they are incapable for adapting to additive datasets. To
surmount this shortcoming, we establish a framework for recognizing
temporal trends in feature data extracted from passive sensors.

I. INTRODUCTION

“Aging in place” (AIP) revolves around the notion of in-
dependent, or partially assisted, living and the ability to con-
tinuously receive any necessary support for a growing gamut
of needs. To further this style of care, the University of Mis-
souri Sinclair School of Nursing and Americare Systems Inc.
have collaborated to create the TigerPlace domicile complex
[1]. As one of four state-approved AIP projects, TigerPlace
has spawned a number of ongoing research ventures focused
on improving and personalizing elder care through environ-
ment monitoring [2-3]. Out of these endeavors, one facet of
the work is focused on crafting a hybrid, intelligent software-
sensor system capable of providing caregivers additional in-
formation about the elders’ eudemonia.

While placing a variety of devices in an individuals
dwelling yields a wealth of activity information, a major issue
is rooted in how to analyze the data to locate trends that corre-
spond to states of wellbeing. Before embarking on data anal-
ysis, an important first step is the extraction of features that
elucidate important information embedded within the data.
Unlike the raw sensor signals, a matrix of computed features,
X = {~x1, . . . , ~xn} ⊂ Rs, may contain an arbitrary number
of data dense regions that correspond to distinct diurnal pat-
terns. By utilizing exploratory data analysis techniques [4], X
can be organized into c self-similar subsets, called clusters,
based upon an underlying similarity measure. But, since the
activity of the monitored individuals, and thus the collected
sensor data, can vary on a daily basis, many of these meth-
ods are insufficient for unsupervised temporal classification.
To ameliorate the data exploration process, we draw upon re-
cent work, growing neural gas clustering (GNGC) [5], from
the realm of temporal clustering. In the subsequent sections,
we not only show that the technique can recognize emergent
activity trends in the computed sensor data features, but also
provide evidence that the feature clusters align well with clin-
ical records.
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II. SENSOR NETWORK & FEATURES

As a method to gain insight into any type of data, fea-
ture calculation depends heavily on the quality and type of
recorded signals. To ensure that a broad spectrum of activities
is preserved for unearthing this information, various apart-
ments at TigerPlace are outfitted with a suite of sensor ele-
ments developed by collaborators at the University of Virginia
[6]. From each of the deployed networks, which include pas-
sive, infrared motion and pneumatic bed sensors, quantized
room location and bed restlessness, pulse and respiration data
are gathered, time-stamped and logged. Though some minu-
tiae are lost in the coarse quantization process, and others due
to communication errors, a bulk of the essential information
often remains intact or can be inferred from other sensors.

Since new sensor data are constantly collected, for each
participant, feature computation begins with the segmentation
of the time-delimited data into 24-hour intervals. Utilizing
these daily snapshots, both motion firings and bed information
are fused together to generate activity density plots.

(a) Zoomed activity plot, of a 4-hour period, for an arbitrary day

(b) Activity plots for two consecutive days

Fig. 1: Sensor density plots of the participants room location and bed res-
tlessness, pulse and respiration, as a function of time.

In the above plots, the elder’s room location, for any given
moment, is encoded on the first abscissa using the color
scheme: blue, green, cyan, yellow, magenta and red denote,
respectively, a presence in the bedroom, bathroom, closet,
kitchen, living room and entryway. Density information is
then coalesced by varying the saturation of the colors based
upon the aggregated motion firings; the more vivid the hue,
the more sensor hits. Similarly, the remaining three axes dis-
play bed restlessness, pulse and respiration firing densities in
blue, green and red; for these, black denotes bed vacancy.

Creating density images, like the ones in Fig. 1, serve a
dual purpose: it not only helps to visualize trends over long
time spans, but also aids in filtering out erroneous data. Fur-
thermore, pertinent features, such as the total time spent in
bed or the number of nightly bathroom visits, become easily
discernible. Other attributes can also be reaped from the ac-
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(a) Plot of motion data (b) Plot of bed restlessness data (c) Plot of bed pulse data (d) Plot of bed respiration data

Fig. 2: Plots of the raw sensor data, in hourly units, for Participant I from 10/10/2005 to 01/29/2007. In (a), the hourly-aggregated firings for eight different
areas: bathroom (green), bed (dark blue), bedroom (red), closet (gold), entryway (purple), kitchen (magenta), living room (blue) and shower (cyan), are
shown. In (b), the hourly-summed low (blue), medium (green), high (yellow) and very high (red) restlessness are plotted as a function of time. Similarly,

(c) displays the number of normal (blue) and bradycardiac (green) firings, while (d) shows the number of eupnic (blue) and apneic (green) sensor hits.

(a) VAT of features, Xt
o ⊂ R8 (b) Original features, Xt

o ⊂ R8 ↓ R3 (c) Revised features, Xt
r ⊂ R32 ↓ R3 (d) Xt

r with ~wk’s and convex hulls

Fig. 3: Plots of the feature data, in daily units, for Participant I from 10/10/2005 to 01/29/2007.

tivity graphs, and include the following: time woke up/went
to bed, number of times out of bed in the morning/night, to-
tal time spent out of bed during those trips, total amount of
nap time, aggregated bed restlessness, pulse and respiration
sensor firings, number of daily bathroom visits, time spent in
each room, aggregated motion sensor firings, and the number
of room changes (puttering index). In total, 32 different ac-
tivity characteristics, are currently measured for each 24-hour
period; others, such as visitor information and time spent out
of the apartment, are being explored for future inclusion.

III. TEMPORAL CLUSTERING

As new feature vectors are appended to X , the possibility
exists for new data dense regions to form or even amalgamate
over time. Due to these transient changes in topology, con-
ventional pattern recognition techniques, such as clustering,
are unsuitable for this task as they are reliant on a speci-
fied class count, while the classification results are localized
in time. However, at least one method, growing neural gas
clustering, is able to accurately capture the temporal activity
distributions formed by the features.

Unlike conventional clustering, which normally involves
optimizing the relationship between the fixed prototype set,
V = {~v1, ..., ~vc} ⊂ Rs, and the set of objects, GNGC draws
upon concepts from a number of different fields to locate
cluster prototypes. Foremost, vector quantization is used to
encode each manifold, M ⊆ Rs, of signals using a set of ref-
erence vectors, W = {~w1, ..., ~wm} ⊂ Rs. To accommodate
the inclusion of new feature vectors, the size of W is allowed
to grow as a function of the number of added attributes. A
hybrid growing neural gas [7] and adaptive resonant theory
[8] scheme is then utilized to update the best-matching ~wk,
and its connected neighbors on a dynamic lattice structure, for
each input stimulus. Since there are no explicit constraints on

the lattices topological arrangement, new connections can be
forged, between arbitrary, non-connected ~wk’s, based on the
induced magnitude response of each ~wk’s receptive fields. In
addition, obsolete connections are allowed to die out, due to
an ‘aging’ factor. By exploiting this behavior, the number of
clusters, at a given time instant, can be determined by isolat-
ing non-connected lattices and finding the number of unique,
non-Hamiltonian graph paths. Combining this with computa-
tional geometry concepts, such as convex hull computation
and point-in-polygon tests, cluster shapes and centers can be
determined. Crisp, fuzzy, or possibilistic membership values
are then assigned to each datum in X using the distance met-
ric that corresponds to each clusters shape. Provided that there
is a constant stream of data, these membership partitions are
updated ad infinitum.

For additional details about this algorithm, with synthetic
dataset experiments, see Sledge and Keller [5].

IV. ACTIVITY ANALYSIS

With the dearth of any parameter decay, the ability to it-
eratively add new neuronal reference vectors to the network,
and an incremental style of learning, GNGC is particularly
attractive for temporal activity analysis. As such, we test its
effectiveness, along with the quality of the computed fea-
tures, in a series of case studies using data collected by the
TigerPlace sensor network system. To aid in annotating the
exposed trends, we make use of medical records and assess-
ments of the participants’ wellbeing collected by registered
nurses during clinical interviews.

A. Case Study - Participant I

Over the course of multiple iterations, the current feature
set, presented in Sec. II, has evolved from a much earlier
subset of 8 characteristics. For each generation of attributes,
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(a) Xt
r ⊂ R32 ↓ R3 from 10/10/2005

to 01/18/2006
(b) Xt

r ⊂ R32 ↓ R3 from 10/10/2005
to 06/17/2006

(c) Xt
r ⊂ R32 ↓ R3 from 10/10/2005

to 11/14/2006

Fig. 4: Temporal plots of the GNGC clustering results, for Participant I, with 40, 60, and 80 neuronal references, respectively. As more data is added to Xt
r ,

such as in (c) and (d), the ~wk’s, shown using filled green spheres, adapt their location and neighborhood connectivity to better model the data.

the quality benchmark has been both the recognition of trends
in stored data along with any future patterns that may arise. To
help probe for these tendencies, both activity density plots and
physiological graphs, such as those in Fig. 2(a)-(d), are used.
Viewing the first two plots in Fig. 2, a number of conspicuous,
distinct patterns immediately emerge: a large, abnormal spike
in bed restlessness, which occurred after an ER visit, a slightly
decreasing, multimodal distribution after the spike, and an
overall decrease in motion firings over time, possibly from
the elder spending more time out of the apartment. Though
there is some correlation between the large restlessness peak
and the pulse and respiration data in Fig. 2(c)-(d), these two
plots did not play a major role in this example.

At the conception of the feature extraction process, it was
uncertain what type of activity clusters would egress from
the physiological data. To aid in visualizing the attributes,
we used both VAT [9], which yielded the reordered pair-
wise dissimilarity image in Fig. 3(a), and principle component
analysis (PCA), which produced the projection plot shown in
Fig. 3(b). Viewing these two images, we found that many
of the daily attributes clumped together in a single region.
With only a scarce number of outliers, denoting days during
the large restlessness peak, it was apparent that these original
features were insufficient in emphasizing all of the visually
perceptible trends from Fig. 2(a)-(b).

Spurring the evolution of the feature set, the number, and
types, of measured characteristics was updated to address
these shortcomings. Upon projecting the revised feature set,
which was made up of the features listed in Sec. II, into R3

using PCA, we found that a number of data dense regions
formed. One of these clusters, the elongated cluster, shown
in Fig. 3(c) using blue, formed in the beginning and was in-
dicative of the elder’s “normal” baseline. A second cluster,
the wispy strand of red points, denoted heavily abnormal be-
havior, which was a culmination of both the large restlessness
spike and the period of bed inactivity, yet motion activity, that
ensuingly occurred. Similarly, a third activity cluster, high-
lighted in green, captured the decrease in motion firings. This
new cluster became the dominant baseline, for a time, until
near the end of the captured data. At this point, an amber
distribution arose, which coincided with hospice caregivers
entering and leaving the apartment.

Given the vast improvement for disinterring a variety of
activity trends, the additive, PCA-reduced data, Xt

r ⊂ R32 ↓

R3, was fed, a day at a time, to the GNGC algorithm. Over
multiple iterations, as shown in Fig. 4(a)-(c), GNGC updated
the spatial location of the reference vectors and found that
3 clusters, shown in Fig. 3(d), emerged. Unfortunately, the
amber distribution, in Fig. 3(c), eluded detection due to the
small number of data points and its sparse nature. However,
as a testament to the algorithms capabilities, when the non-
projected data was used, we found that the hospice worker
cluster and several outlier points formed a number of isolated
groups, thus driving up the cluster count. The only drawback
of clustering up in 32-space, with GNGC, is that we lose the
ability to directly display the learned distributions; recently,
however, we have contrived a suitable visualization [10].

B. Case Study - Participant II

In contrast to trends found in the previous study, those in
Fig. 5(a)-(d) are less pronounced. Delving through medical
records, we found that the elder had a total knee replace-
ment a few months after the sensor data collection began.
Com-paring the event with the plots, we see that, in the be-
ginning, there are a large number of bed restlessness sensor
firings, due to the resident constantly readjusting; however,
as ex-pected, the levels slowly died down. After the surgery,
there is also a surge in bradycardiac (1-30 BPM) pulse firings,
in Fig. 5(c), that decreases much later in the data collection
process. This initial increase in bradycardia is unexpected, as
the individual’s heart rate is likely to increase episodically,
after the surgery, due to increased pain from bed movement.
Viewing Fig. 5(d), a decaying trend is also apparent, as the
decrease of eupnic and apneic sensor firings coincides with
the drop in low pulse firings.

As with the previous example, we consider the amount of
information captured in the updated features versus the orig-
inal set. Projecting the original attributes into 3-space using
PCA, the plot in Fig. 6(a) portrays a distribution that varies
greatly in comparison to the one shown in the previous study.
Nonetheless, since many of the points are strewn in the re-
duced feature space, and none of the outlined trends are vis-
ible, we again conclude that these features are insufficient.

Turning now to the revised feature set in Fig. 6(b), we see
that there are three major activity distributions present in the
data: a long, thin strand of red-highlighted points, a large blue
cluster, and a sparse group of green data. Much like the red
distribution in Fig. 3(c), the one in Fig. 6(b) corresponds to
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(a) Plot of motion data (b) Plot of bed restlessness data (c) Plot of bed pulse data (d) Plot of bed respiration data

Fig. 5: Plots of the raw sensor data, in hourly units, for Participant II from 11/11/2005 to 07/16/2007.

(a) Original features, Xt
o ⊂ R8 ↓ R3 (b) Revised features, Xt

r ⊂ R32 ↓ R3 (c) VAT of blue cluster from (b) (d) Xt
r with ~wk’s and convex hulls

Fig. 6: Plots of the feature data, in daily units, for Participant II from 10/10/2005 to 07/16/2007.

the days where there was little, to no, restlessness, pulse or
respiration data and only motion firings; this may indicate that
the elder is sleeping on a couch or in a reclining chair. Beyond
the red cluster, the sparse green and amber distributions are
indicative of aberrant days. Similarly, the outstretched blue
distribution is related to the individuals baseline; however,
contained inside this single cluster are actually two groups
that form over time. The first, which is located in the lower
half of the distribution, is associated with the high restless-
ness, pulse and respiration firings, while the second formed
near the upper half after the firing levels dropped. To see if
these temporal clusters are also closely related in R32, we
produced the VAT image, shown in Fig. 6(c). By concentrat-
ing only on the data in the blue distribution, two dark blocks,
highlighted in red and green, formed in the VAT image and
exposed the aforementioned inter-cluster structure. Given that
the motion attributes dominate the feature set, in terms of the
total number of motion characteristics, this may explain why
the two clusters are present in R32, but not visually separated
in the projected plot.

Despite the potential loss in cluster structure when decor-
relating the data, we again fed the projected dataset, Xt

r ⊂
R32 ↓ R3, to GNGC, one datum at a time. After the en-
tire dataset had been presented, and the neuronal references
stabilized, the algorithm reported that five clusters, shown in
Fig. 6(d), materialized. Though we originally surmised that
only four distributions existed in the data, the fifth temporal
cluster arose when the neural connections in the red group
were severed to create two abnormal behavior classes. Since
these results mesh well with the expected ones, we also clus-
tered the non-projected data and found that, as with the pre-
vious study, a number of new clusters were found in R32.
Projecting the neuronal references down into R3, we found
that the blue distribution, in Fig. 6(b), split into two clusters.
As such, the detection of these emergent groups provides ev-
idence that GNGC can function well for locating trends.

V. FUTURE RESEARCH

With the ability to discover forming distributions, grow-
ing neural gas clustering is an integral part of the adaptive,
intelligent software-sensor system currently under construc-
tion. To aid in assessing well-being from the exposed trends,
we plan on coalescing the cluster partitions with a fuzzy logic
classifier. Unlike previous research in elder environment mon-
itoring [11-13], the completed system will be able to detect
baseline changes and ascribe linguistic descriptions to each
day. Furthermore, it will only require a minimal amount of
human intervention and data interpretation, making it rather
attractive for simultaneously tracking the wellbeing of multi-
ple individuals.
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