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Abstract—We developed a novel markerless motion capture
system and explored its use in documenting elder exercise
routines in a health club. This system uses image contour
tracking and swarm intelligence methods to track the location
of the spine and shoulders during three exercises — treadmill,
exercise bike, and overhead lateral pull-down. Preliminary
results of our qualitative study demonstrate that our system is
capable of providing important feedback about the posture and
stability of elders while they are performing exercises. Study
participants indicated that feedback from this system would
add value to their exercise routines.

I. INTRODUCTION

VERYONE can benefit from some type of exercise

including, and perhaps most importantly, older adults.
However, it has been shown that only 30% of older adults
aged 65 and older include a regular exercise routine in their
daily activity [1]. Sedentary elders who begin an exercise
program ultimately benefit from improved quality of life
and reduced health care expenditures [2]. Additional benefits
of a daily exercise routine for elders include prevention of
falls, alleviation of depression, improved cognitive function,
improved bone density, improved cardiovascular function
— the list of benefits is virtually endless [2-7]. In [7],
the authors discovered that exercise is an under prescribed
therapeutic intervention due to misconceptions by elders,
their caregivers, and their health care providers about ex-
ercise safety. For the reasons stated above, improvements
in exercise safety for older adults could have a significant
impact on the overall health of elders.

To address the issues described above, we conducted a
pilot study that examined the human factors issues of a
novel technology interface designed to capture range of
motion and provide feedback to elderly people using exercise
equipment. Human factors is defined as the study of how
humans accomplish work related tasks in the context of
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human-machine system operation and how behavioral and
non-behavioral variables affect that accomplishment [8, 9]. In
health care, human factors researchers attempt to understand
the interrelationships between humans and the tools they
use, the environments in which they live and work, and
the tasks they perform [10-12]. Thus, the goal of a human
factors approach is to optimize the interactions between
technology and the human in order to minimize human error
and maximize human-system efficiency, human well-being,
and quality of life [6]. This paper describes the technology
used in our human factors research. This technology is a
novel exercise-feedback computer interface that combines
image segmentation, contour tracking, motion capture, and
swarm intelligence.

Section II introduces previous work in using contour track-
ing for human motion analysis. Section III gives a detailed
description of our system while Section IV describes the
results of using our system with older adults. We summarize
in Section V.

II. RELATED WORK

Human motion analysis is a well researched topic and is
pertinent to many fields including sports medicine, nursing,
physical therapy and rehabilitation, and surveillance. There
have been special issues of journals and tracks in computer-
vision conferences completely dedicated to human motion
analysis in video.

References [13—16] provide a good background on human
motion analysis techniques. Reference [17] uses silhouette-
based features to recognize falls in monocular video of elders
in the home environment. In [18], the author proposes a
method to analyze human pose during exercise. This method
has the strength that it is generalizable to any pose; however,
as the author points out, it is very error prone. Also, the
assumption is made that the background subtraction (silhou-
ette extraction) is near ideal. Achieving an ideal silhouette
in a gym environment is virtually impossible as we show
throughout this paper. Another assumption that is made in
[18] is that the subject is facing the camera and upright. We
wish to measure the angle of the spine, as seen from the
side view in both upright (treadmill) and sitting (overhead
pull-down) poses; hence, this assumption makes this method
undesirable for use in our research.

Active contours, called snakes [19], have been used to
track face features (e.g. eyebrows and mouth) and humans
in video. Although this method is effective for tracking the
features of faces and humans in video, it does not give us the
capability of measuring the posture information we require.
For instance, measuring the angle of the spine with respect to
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(a) Spine contour tracking

Fig. 1: Examples show spine and shoulder tracking of
treadmill exercise with contour templates shown in blue.

(b) Shoulder contour tracking

the horizontal with an active contour is not straight forward
as active contours are not rigid, static features. However, one
of the features of the rigid, static contour templates in our
method is the angle with respect to the horizontal. Hence,
we use a contour tracking method based on the edge distance
transform [20] with rigid, static templates.

III. EXERCISE-FEEDBACK SYSTEM

Our method tracks body contours in the video of exercising
humans. The two contours we are interested in are the edge of
the back (spine) as seen from the side view and the shoulders
as seen from the rear or front view. Fig. 1 shows these two
contours on example video frames of a research participant
walking on a treadmill. Fig. 2 illustrates our approach in a
block diagram. We designed our approach to be both robust
and flexible.

The environment in which we are performing this research
study is a public gym; hence, our ability to control experi-
mental conditions, such as lighting conditions, background
environment, and subject clothing, is very limited. As a
result, we chose simple, safe, and proven methods to perform
the operations in our algorithm.

First, the silhouette of the human in each video frame was
computed. We used a statistics-based background subtraction
algorithm that is adapted from [21]. Second, the chamfer
distance transform of each silhouette frame was computed,
as in [22]. The chamfer distance transform provides an error
surface upon which we can fit a contour template. We used
Roach Infestation Optimization (RIO) [23] to find the best
position of the contour template, which, ideally, is located
on the body contour of interest, either the back or spine.
RIO is inspired by the Particle Swarm Optimization (PSO)
[24] algorithm. In [23] we showed that RIO is superior to
PSO in finding the global optima of highly modal objective
functions. RIO works well for the problem we present in this
paper.

The best position of the contour template is defined by a
temporal fitness function that accounts for exercise dynamics
and template translation and rotation. We now describe in
more detail each element shown in the block diagram in
Fig. 2.

A. Human Silhouette Extraction

Silhouette extraction or background subtraction is a prob-
lem that is very pertinent to many fields of research, such

Video Frame
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Fig. 2: Block diagram of exercise-feedback system compo-
nents — spine tracking on side view of treadmill exercise.
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(a) Side view video frame of
treadmill

(b) Rear view video frame of
treadmill

(c) Side view silhouette image of
treadmill

(d) Rear view silhouette image of
treadmill

Fig. 3: Silhouette extraction examples of treadmill exercise.

as surveillance, activity recognition, and computer vision.
However, this problem has many difficult facets including dy-
namic lightings conditions and backgrounds, poor scene illu-
mination, inferior cameras, and highly variable foregrounds.
It is beyond the scope of this paper to address these matters;
however, we emphasize that extracting “good” silhouettes
is essential to our algorithm. The silhouette extraction al-
gorithm we use is adapted from [21]. The red-green-blue
(RGB) digital image (one video frame) was converted to a
hue-saturation-value (HSV) color space. Then a statistical
background representation was formed from approximately
100 background video frames (no human is in view). This
statistical background representation was used to subtract
the background from each video frame of the participant
exercising, leaving only the image pixels that correspond to
the image of the participant. Figs. 3(a,b) show the silhouettes
computed from the corresponding video frames shown in
Figs. 3(c,d). We denote the silhouette image of video frame
f as S(i,7, f), where S(i,7, f) = 1 indicates the ith row,
jth column pixel is a foreground pixel and S(i,75, f) = 0
indicates a background pixel.

B. Contour Tracking

We adapt the chamfer distance transform, described in [20,
22], and define

C(r,c, = max min r—i)?+(c—j)?
(re.f) { it o, [07= 7+ (e =37

. 2 2
min r—1)°+ (c— . (D
{Vvi,vj:8(i,5,f)=1} [( ) ( J) ]}
Essentially, Eq.(1) calculates the minimum squared distance
between each pixel location and the edge of the human
silhouette. We compute Eq.(1) for each pixel in the image
and this distance transform map can be used to determine

the best location of the contour template. The template error
score is

D

{(r,c)Etemplate pixels}

C(r,c f), @)

where &y = (zs,yy,0y) are the contour template parameters,

and f is the video frame. We then map Eq.(2) onto the

interval [0, 1] with a simple mapping function of the form
Mio,1)(Zg, f) = min {M (%}, f)/1000, 1} . 3)

This mapping is performed so that we can use standard

fuzzy operators to combine this objective function with a

membership function that limits the search space (see Section

1I1-C).

The best contour template location is defined as
“

Tvest,f = arg min Mo 1) (Zy, f).
s

The template is a discrete list of pixel coordinates, which
define the template shape. For example, a linear (line)
template, such as that used to track the spine, could be
defined as

T= {00 1" 02},

where, in this example, T is a vertical line, three pixels long.
This template formulation is very general and can represent
any types of shapes, including lines, curves, and broken
shapes. We use a straight line to model the contour of the
spine, see Fig. 4(a), and two sloping lines with attached
vertical lines to model the contour of the shoulders, see
Fig. 4(b). As Fig. 4 shows, the templates we used for this
study are customizable for each participant. However, if one
wished to use our technique to track other body contours, a
template could easily be designed. Eq.(2) is an error score of
the fit of the contour template, for a given parameter vector
Zy, to the edge of the silhouette in frame f. The coordinates
(r, ¢), over which the summation in Eq.(2) is computed, are
found by the linear transformation
Ty
] T + [ o

e

where [T;] = [t. t,]7 is the coordinate of the ith pixel in the
contour template T. In our algorithm we define the center
of the template as the origin, but this is arbitrary.

Fig. 5 illustrates the value of the template error scores M
and Mo 1j for two examples. Both examples use the same
silhouette and contour template, only the parameter vector
Zy is changed. As Fig. 5(a) shows, the best location of the
contour template — on the spine — results in the lower error
score. Assuming that the contour template is defined properly
and the silhouette image is ideal, the human contours can be
tracked in video by solving Eq.(4) for each successive video
frame.

cos B¢
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], &)

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on April 05,2010 at 17:08:05 EDT from IEEE Xplore. Restrictions apply.



5
()
~
I3
~
5

(a) Spine template

D E———
Neck Width

Shoulder
Height

<— Shoulder Width—— >
(b) Shoulders template

Fig. 4: Templates used to track (a) spine and (b) shoulders.
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(a) Contour parameters
#( = {171.6,100.0, 30.5},
Error M (Z(1)) = 79.8,
Mo 17(Z1)) = 0.01

(b) Contour parameters
#2) = {150,100, 0}, Error
M(Z®) = 767.8,
Mo 17(Z)) =0.89
Fig. 5: Example values of contour scoring function Eq.(2)
for spine contour tracking of treadmill exercise.

C. Temporal Contour Search

Under ideal circumstances where a “good” silhouette
image can be computed, solving Eq.(4) would be sufficient
for tracking the contours on the human. However, we con-
ducted this research in a gym-environment; hence, “good”
silhouettes were not always achieved. We added a temporal
term to Eq.(4) that limited the candidate contour locations &'
to those that only changed slightly from the previous frame.
In other words, because we are tracking human motion, we
can assume that the spine or shoulder contours only move a
small amount between video frames (video was taken at 7.5
frames-per-second). For each video frame, the error function

that must be minimized is the fuzzy union of Mg ; and R

E(ffa'f;—la f) = maX{R(efa 9;—1)v M[O,l] (ffa f)} (6)

where 9}71 is the previous frame’s best rotation parameter
solution and R(fy, 0} _,) is the membership in “rotated more
than expected for one video frame”. The temporal damping
function is designed such that large changes in the template
parameters produce high membership. We use the following
formulation for the membership R

0<@>

(-5
0

where 0 = 65 70;2_1| and, a and b set the inflection points of
the spline. Values of the inflection points that we have found
effective for our study are @ = 5 and b = 10. In essence,
a sets the maximum expected change in rotation between
frames, while b sets the point at which candidate solutions
are severely punished. Values that we found effective for our
study are a = 5 degrees and b = 10 degrees. Hence, it is
clear, by comparing Egs. (3) and (7), that R will dominate
the value of F in Eq.(6) for changes in rotation angle greater
than a. E reduces to Mjq 1) for § < a.

RIO [23] is used to optimize E for each video frame in
the following way:
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1) The roaches are initialized randomly within a pre-
defined bounding box around the contour of interest —
the spine or the shoulders — and within a predefined
parameter space;

2) The RIO algorithm searches for the best set of param-
eters £y that minimize F;

3) Advance the video frame and return to step 1.

D. Interface

The interface we developed provides feedback to the study
participants. The layout of our interface is shown in Fig. 6.
The upper left shows the silhouette extraction result, the
upper right shows the tracking contour on the silhouette. The
lower left view is an exploded view of the tracking area.
This view provides the participant with a more detailed view
on how their spine or shoulders look as compared to the
contour tracking reference. Finally, the angle of the spine
or shoulders is graphed on the lower right. The solid blue
line shows the angle at each video frame, while the dotted
red line is a running average of the angle. Thus, information
on both the movement (solid blue line) and overall posture
(dotted red line) is shown on the graph. Section IV discusses
the participants’ views on the exercise feedback interface.

IV. RESULTS

Our pilot study consisted of qualitative study of key infor-
mant interviews of 38 older adult participants aged 65 years
and older. We recorded images of each participant doing each
of the three exercises and then showed each participant the
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Fig. 6: Layout of contour tracking interface — upper left shows silhouettes, upper right shows tracking result on silhouettes,
lower right shows exploded view of tracking area, and lower right is a plot of the angle versus video frame.

results of the exercise-feedback system. Structured key infor-
mant interviews were then conducted to gain feedback about
how the interface could be developed further to support the
participants during their exercise routines. These interviews
were recorded and transcribed and phenomena that emerged
and reappeared across all interviews and observations were
identified. A case study of two participants from our study
is described in [25].

In brief, research participants were interested in seeing
their images after they performed the exercises. All partic-
ipants were most interested in how their posture appeared
during the period of exercise. Participants expressed that
processed images assisted them to visualize how they in-
teracted with the exercise equipment, if they were using
good technique to perform the activities, and if they had
any unusual movements while performing the desired tasks.
For example, one participant stated,

Well, it seems to me that [the images tells you how
to] use the body the way you’re supposed to use
it to maintain good leg support and arm support.
I do sway back and forth, but I don’t think you

can do anything other than that when your body is
moving like it is below the trunk.

Many of the key informants interviewed discussed their
fear of losing their balance and falling while walking; they
indicated that the images provided them the ability to see
if they were maintaining good balance over the core of
their body, which is important in preventing falls. Some
participants indicated the images would provide some added
value to their exercise, making them feel safer, less likely
to be injured, and less likely to fall. Others participants
indicated that the images were useful but could not really
take the place of a trainer who could help interpret what they
need to do to be most successful in reaching their exercise
goals.

The participant shown in Fig. 3 has issues both with
posture, hunching, and gait (a significant limp). In contrast
to the participant shown in Fig. 3, the participant shown
in Fig. 7 has good mobility and little to no afflictions that
affect gait and posture. Figure 8(a) shows the spine angle plot
of the participant shown in Fig. 3 and Fig. 8(b) shows the
spine angle plot of the participant shown in Fig. 7. As these
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(b) Rear view video frame of
treadmill exercise

(a) Side view video frame of
treadmill exercise

Fig. 7: Sample video frames of participant with good mobil-
ity on treadmill.

plots show, the contour tracking method is able to detect not
only the overall difference in the participants’ postures — as
represented by the overall deviation from 0 degrees — but
the difference in their gaits are shown by the differences in
the patterns shown in the two plots.

V. CONCLUSIONS AND FUTURE WORK

Our exercise feedback interface has broad application in
fields where measuring human body movement is important
— e.g. physical therapy, sports medicine, and nursing. We
applied our methods to eldercare, specifically to improve the
safety and effectiveness of exercise. Our study included key
informant interviews of 38 older adult participants and our
preliminary analysis of a small sample of these interviews
indicated that our interface was both effective in showing
older adults information on how they move while they
exercise and, also, in showing older adults areas in which
they could improve their exercise.

The interface is based on a contour tracking method that
tracks the movement of the spine and shoulder. Our technique
is generalizable, such that health professionals could choose
to track other parts of the body that can be represented by a
rigid contour template.

Finally, we are adapting the contour tracking methods for
use in a home environment. A large part of our ongoing
eldercare research is on the use of technology to help older
adults maintain independence. We are investigating the use
of silhouette-based techniques to detect falls, assess mobility,
and perform activity analysis. These techniques are important
to effectively and inexpensively address the needs of our
aging population.
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Fig. 8: Spine angle plots that show how contour tracking
captures posture information.
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