IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 16, NO. 4, JULY 2012 607

Activity Density Map Visualization and Dissimilarity
Comparison for Eldercare Monitoring
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Abstract—In this paper, we present a methodology for analyzing
passive infrared motion sensor data logged in the homes of seniors.
The objective is to capture activity patterns that represent differ-
ent health conditions. Recognizing changes in the activity patterns
can then be used to provide early detection of health changes. A
visualization of motion sensor data is introduced in the form of
a density map that uses different colors to show varying levels of
activity. For evaluating the activity density level accurately, time
away from home is determined first using a system of fuzzy rules.
In addition, a dissimilarity between two density maps is computed
using texture features for automatically determining changes in
activity patterns, which may indicate a health problem. The activ-
ity density maps are being used in an aging in place senior housing
community to aid clinicians in early illness detection. Three case
studies of elderly residents are included to illustrate how the density
map and dissimilarity measure can be used to track general activ-
ity level and daily patterns over time, showing changes in physical,
cognitive, and mental health.

Index Terms—Co-occurrence matrix (CM), early illness detec-
tion, eldercare technology, fuzzy logic, motion density map.

[. INTRODUCTION

ECHNOLOGY that can help seniors “age in place” has

been spotlighted in recent years, spurred by an aging pop-
ulation. With this demographic trend, there is a desire to keep
older adults healthy and living independently in the home of
their choice. Aging in place offers a better quality of life for
seniors; they prefer to live in their own home. In addition, aging
in place can provide a more cost-effective alternative at a time
when the dramatic population shift will stress current resources,
and facilities designed to care for older adults. However, there
are huge challenges in keeping older adults healthy and func-
tionally able so that they can age in place.

One approach to these challenges is technology in the form of
Ambient Assisted Living, that is, the use of systems that provide
daily support unobtrusively. In this paper, we present a method-
ology for analyzing passive infrared (PIR) motion sensors in
the context of continuous monitoring of activity patterns in the
home. The objective is to use the PIR sensors to capture activity
patterns that represent different health conditions. Recognizing
changes in the patterns can then be used to provide early de-
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tection of potential illness and functional decline. Recognizing
health problems while they are still small can provide a window
of opportunity for interventions that will address the problem
areas before they become catastrophic and thus, aid in keeping
seniors healthy and functionally independent [1].

This strategy is being tested in a senior living community
called TigerPlace. To date, 42 sensor networks have been in-
stalled in TigerPlace apartments since Fall, 2005, with an aver-
age installation time of about two years. This longevity in sensor
data collection is allowing us to develop algorithms for identi-
fying sensor data patterns that correspond to activity and health
conditions. For example, the sensors can be used to capture
sedentary versus active “puttering” lifestyles, nights of restful
sleep versus restlessness or wandering at night, and consistency
in sleep and meal times versus irregular patterns. Changes in a
lifestyle pattern can be an indicator of deteriorating health con-
ditions. In this paper, we first describe related study and then
present our work on activity monitoring, including a visualiza-
tion of the PIR sensor data with a dissimilarity measure based
on texture features. Three case studies illustrate the use of the
methods for tracking health.

II. BACKGROUND AND RELATED WORK

Technologies to support independent living for older adults
have been available for several years. The focus of many systems
is to alert caregivers when emergencies happen. For example,
some systems have a pull cord attached to the wall or a wearable
pendant with an alert button. However, when an older person is
unable or reluctant to give an alert, this type of system becomes
useless. To address this problem, sensors are introduced to mon-
itor activities in the home, with the goal of tracking patterns and
generating alerts automatically.

Glascock and Kutzik proposed the use of motion sensors to
infer activities of daily living [2]. The Independent Life Style
Assistant (ILSA) developed by Honeywell was also an early sys-
tem which proposed passive monitoring (e.g., mobility, sleep-
ing, and toilet usage), as well as the learning of environmen-
tal preferences (e.g., temperature) [3]. Ogawa et al. monitored
two participants for over a year, logging motion activity, sleep
time, and appliance use (with wattmeters) [4]. Beckwith stud-
ied nine residents with dementia in assisted living housing, us-
ing motion and door sensors, and bed load cells; residents and
staff each wore a badge for location tracking [5]. Barger et al.
report a monitoring system with eight PIR sensors to infer a
person’s behavioral patterns using probabilistic mixture model
analysis [6]; the approach was validated with one user and a
manual log documenting activities such as sleeping, changing
clothes, and meals.

Lundell et al. proposed a medication prompting system that
uses context and previous behavioral patterns [7]. Cuddihy
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et al. collected data in the homes of seniors, using motion sen-
sor density to determine the level of movement; family members
could be alerted when the motion density was very low, indicat-
ing little or no movement [8]. Kaye et al. introduced a system
to estimate walking speed from noisy time and location data
collected by PIR sensors; walking speed was investigated as a
proxy to detect early signs of cognitive problems [9].

Wearable health monitoring devices have also been proposed.
Actigraphy is a method of monitoring human rest/activity cy-
cles, typically used with a wrist sensor worn like a watch [10].
Paavilainen et al. studied a telemetric actigraphy system to mon-
itor the circadian activity rhythm of elderly nursing home resi-
dents [11]. Howell et al. investigated the daily maximum activity
collected using actigraphy to evaluate the clinical utility in pa-
tients with heart failure [12]. Philipose et al. used RFID gloves in
the home to recognize activities through object proximity [13].
Korhonen et al. introduced a model which used wrist-worn sen-
sors to measure health and wellness status of an individual [14].
Sensing has also been incorporated into textiles for wearable
systems [15]-[17]. There are advantages to wearable sensing
systems, such as the ability to collect data outside of the home.
However, there are problems in relying on wearable sensing for
continuous, long-term monitoring of seniors, as many find them
intrusive [18]. Also, older adults with cognitive problems may
either forget to wear the devices or intentionally remove them.

There have been a variety of machine-learning approaches
applied to in-home sensor data. Kim et al. compared hidden
Markov models (HMM), conditional random fields, skip chain
conditional random fields and emerging patterns in activity
recognition, and proposed a topic model based on daily rou-
tine discovery [19]. Rashidi ef al. introduced an adaptive smart
home system and the frequent and periodic activity miner al-
gorithm to find patterns of daily activities [20]. Helal et al.
introduced a smart environment to monitor activities, diet, and
exercise compliance of diabetes patients, using HMMs for task
recognition [21].

Barnes et al. used motion and door sensors to extract a 24-h
activity profile [22]. An alert could be generated if newly logged
data deviated significantly from the stored profile. However,
due to the brittleness of the alarms, a voice messaging system
was incorporated to send a confirmation. Majeed et al. used
fuzzy rules to classify motion and door sensor data into one of
six activities, such as sleeping, preparing or eating food, and
receiving visitors [23].

This body of work shows that activity behavior can be cap-
tured with sensors. However, what is largely missing is a relevant
interpretation for the purpose of detecting early health changes
in a generalizable way. Many researchers try to capture activ-
ities of daily living (ADL). Knowing whether an aging adult
is able to feed, dress, and bathe himself is important for de-
termining whether independent living is possible. However, the
sensor patterns associated with each ADL are often different in
different housing configurations; a normal ADL pattern might
be different for each monitored resident depending on the size
of the residency, the chronic condition(s) being managed, or
simply preferences. Also, explicit ADL recognition may be un-
necessarily complex to capture early signs of health changes or
be too late in some cases for early interventions. For example,
we have observed changes in night time activity as a result of
urinary tract infections without seeing changes in ADLs [24].
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Fig. 1. Integrated sensor network deployed in TigerPlace.

Our approach is to capture sensor data patterns that are typical
for an elderly resident and offer a clinically relevant perspective,
and then look for changes in the sensor patterns. Whatever the
pattern was, a change provides an indication of a possible health
decline that warrants a closer look by healthcare providers. Our
goal is to investigate features that are clinically relevant regard-
less of the floorplan, the lifestyle pattern, or chronic condition.
To test this approach, we have installed sensor networks in the
homes of elderly residents with a variety of different conditions
and with floorplans of different sizes. It is also important that
we capture the natural activity patterns of residents, so we do
not require them to wear any sensors or do anything outside of
their normal daily routines. Residents in our studies report that,
after an initial adjustment period, they no longer consciously
think about the sensors but rather go about their regular daily
activities [25].

III. INTEGRATED SENSOR NETWORK

The sensor network deployed in TigerPlace apartments is
shown in Fig. 1. Residents are recruited to participate in a study
approved by the University of Missouri Institutional Review
Board. Sensors include PIR motion sensors, a stove sensor, and
a bed sensor that can also be installed in recliner chairs [26].
Sensor data are logged and analyzed automatically to look for
possible alert conditions; if a significant change in the sensor
patterns is determined, an alert is generated in the form of an
email sent to the nursing staff [27]. An Electronic Health Record
(EHR) is used to log health-related events, vital signs, health as-
sessments, and other medical-related data [28]. Both the EHR
and the sensor data can be viewed through web-based inter-
faces, which were developed iteratively with clinicians and the
research team.

Motion sensors detect presence in a particular room as well
as specific activities, such as a ceiling-mounted sensor over the
shower or a sensor installed in the refrigerator. A motion sensor
is also installed on the ceiling above the front door to detect
movement through the doorway (e.g., for apartment exits). For
social reasons, residents sometimes leave their front door open
so magnetic door sensors are not reliable for this purpose. The
motion sensors are commercially available PIR HawkEye sen-
sors which transmit using the wireless X10 protocol [29]. The
sensors detect movement of warm bodies and will transmit an
event every 7 s when movement is still detected. This artifact
is used to capture the activity level as a density (the number of
sensor events per unit time) at different times of the day. For
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example, a pattern of consistently low motion density (about 50
events/h) indicates a sedentary lifestyle, whereas a high density
(over 400 events/h) indicates an active puttering lifestyle.

The bed sensor is a pneumatic strip that detects low, normal,
and high pulse and respiration rates and restlessness in bed
[30]. The stove sensor detects motion in the kitchen as well as
the temperature of the stove/oven unit; this is accomplished by
adding a thermister to a PIR motion sensor. These additional
sensors contribute to the pattern of activity logged for each
resident [26]; however, here, we focus on the PIR motion sensor
events to generate the activity density map.

IV. COMPUTING TIME AWAY FROM HOME (TAFH)

To evaluate the activity density accurately, TAFH is first de-
tected using the wall-mounted PIR sensors and the ceiling-
mounted PIR sensor above the front door. The PIR data are
preprocessed into three features in units of seconds. The param-
eter exit represents the duration of door sensor events after other
in-home sensors fire and before leaving, away is the duration of
no sensor events, and return is the duration of door sensor events
after returning. Although the TAFH algorithm is designed for a
single exit point, the algorithm could be extended for additional
exits. The proposed approach is independent of the number of
PIR sensors in the home.

A TAFH confidence is computed using a set of fuzzy rules
with the three features described previously as inputs [31].
Trapezoidal-shaped functions are used to define fuzzy mem-
berships for Short, Long, and Very Long; these memberships
provide inputs to the fuzzy rules [31]. A linear combination
of variables is used per the Takagi—Sugeno—Kang model [32],
where the output is a confidence [0,1]. The membership func-
tions and rules were developed empirically. Here, a confidence
of 0.75 or higher is considered to be a TAFH; the TAFH peri-
ods are subtracted from the hour when computing the motion
density (PIR events per time).

Validation was performed with three datasets. The first set
was collected in a test apartment configured with a typical sen-
sor network. Researchers lived in the apartment in shifts. Videos
were recorded, and a log file was written by the occupants to
record their activity; both were used as ground truth for valida-
tion. A second set was generated using a simulator designed for
generating motion and bed sensor data with known patterns over
long periods of time [33]. The third set is from a test apartment
in TigerPlace. A web camera was installed in the living room
of the apartment for four days; silhouettes of the residents were
extracted [34] and used as ground truth to verify the TAFH peri-
ods. Results are shown in Table I for the complete set of TAFH
events and for those with a duration longer than 5 min. Although
the algorithm missed some short TAFH periods, the results in-
dicate the algorithm works well for TAFH periods longer than
5 min.

V. ACTIVITY DENSITY MAP

In the density map, different colors are used to represent dif-
ferent levels of motion sensor density. The density is computed
as the number of all motion sensor hits during 1 h divided by
time at home during that hour. Examples of density maps are
shown in Fig. 2. The X-axis represents days in a month. The
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Fig. 2. Examples of activity density maps.

Y-axis represents hours in a day, from midnight (top) to 11 PMm
(bottom). The colorbar on the right of the figure shows the colors
by density range. Black represents TAFH. White corresponds
to very low density. Colors change from light gray (at the low
end of 50 events/h), yellow, green, light blue to dark blue at
the high end (550 events/h or more). In the density map, the
density is calculated for each hour block; TAFH is computed to
the second.

Fig. 2 shows examples of different lifestyles. The map on the
right is less colorful, showing a sedentary lifestyle. The TAFH
periods (black) are infrequent. The sedentary resident mostly
left the home only for meals, and sometimes skipped the meal
in the dining room. In contrast, the left map represents an active
lifestyle. The active resident left home more frequently which
also tends to indicate a higher level of activity. The overall day
time activity is higher for the active resident, as indicated by the
color. Activity density maps are now used operationally by the
TigerPlace clinical staff to observe or confirm changing health
trends of the residents.

VI. DISSIMILARITY USING TEXTURE INFORMATION

The density maps illustrate the patterns of the residents’ daily
activity, including the periodicity of daily activity that may cor-
respond to health changes. A co-occurrence matrix (CM)-based
dissimilarity measurement is proposed for evaluating changes
in daily patterns as shown in the density maps [35]. The aver-
age density and average TAFH provide useful information on
the activity level of residents but does not provide information
about the periodicity of daily activity. We propose the use of
CM texture information to capture periodicity patterns of daily
activity.

A. CMs of Activity Density Maps

The gray-level co-occurrence matrix (GLCM) is derived from
gray scale images to extract textural features [36]. However,
here, we use the original density and TAFH data directly to
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generate the activity density map co-occurrence matrix
(ADMCM). The horizontal direction Ny refers to the number of
days and the vertical direction Ny refers to the hours of the day
(1440 min). Each resolution cell in the vertical direction rep-
resents the density of a specific hour in that minute except
the minutes away from home. Normally, the density is less
than 550 events/h; in the rare case of higher densities, they are
capped to 550. The TAFH minutes are set to a larger num-
ber such as 750, which gives enough contrast to the maximum
density. Suppose the density value is quantized to NV, levels sep-
arately. Let L, = {1,2,...,N,}, Ly ={1,2,...,N,}, and
M ={1,2,..., Ny, }. The original data D can be represented
as a function which assigns a value M to each resolution cell
or pair of coordinates in Ly X Lx; D: Ly x Lx — M. The
ADMCM is defined similarly with the GLCM [35].

B. Feature Extraction

All textural information is contained in the set of CMs. The
equations which define a set of textural features are given in [35]
and [36]. According to the density map properties, the textural
features are chosen from
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The angular second moment feature, (1), is a measure of ho-
mogeneity. The contrast feature, (2), measures the amount of
local variations. The inverse difference moment, (3), also mea-
sures homogeneity, achieving its largest value when most of the
occurrences are concentrated near the main diagonal. Entropy,
(4), measures the disorder. The textural features measure regu-
larity in the activity behavior and capture shifts. In addition, the
average motion density per hour and the average TAFH per day
are also used as features in the dissimilarity measure.

C. Distance Measure

The dissimilarity of two density maps is computed in feature
space as the distance from one map to another, i.c., the smaller
the number, the more similar the density maps. The weighted
normalized Euclidean distance is used as the distance measure,
with the six features described previously. Given a feature vector
X, {X1,Xa, . .. ,Xn },the weighted normalized Euclidean distance
d,s between the normalized vector z (reference activity map)
and 2} (current activity map) is defined as follows:

x5()
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Fig. 3. Weighted normalized Euclidean distance measures for the density
maps shown in Fig. 4 (single resident). Each month is compared to the baseline
month, January 2006.
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We tested six distance measures for comparison (Eu-
clidean, Cityblock, Minkowski, Cosine, correlation distance,
and weighted normalized Euclidean distance). The different dis-
tance measures show similar trends in computing dissimilarity.
In empirical results, the weighted normalized Euclidean dis-
tance was shown to be the most sensitive and thus, was chosen
for the dissimilarity measure of the density maps. Sample test
results are shown in the following section.

D. Results and Analysis

Data from motion sensors installed in the living room,
kitchen, dining room, den, bedrooms, bathrooms, shower, clos-
ets, laundry, and front door are used in the density map. The
apartments include a range of floorplan designs, sizes, and num-
ber of bedrooms and bathrooms, which also means a variable
number of PIR sensors. A typical configuration has one PIR sen-
sor per room except for the bathroom which also has a shower
sensor. Results are generated for a single resident over time and
across multiple residents to investigate the sensitivity. Here, we
have selected one month as the window size for illustration.
However, any window size can be used.

1) Single resident results: Fig. 3 shows the dissimilarity re-
sults for a resident, using the map of January 2006 as a
baseline month and compared to other months (shown in
Fig. 4). A value of 750 is used for the TAFH; different
values were tested (650, 750, 1000, and 1500) and they
follow a similar trend.

2) Cross-resident results: Fig. 5 shows the dissimilarity re-
sults across nine residents. Residents 2—9 are compared to
resident #1 (see Fig. 5). A value 750 is used for the TAFH;
different TAFH values were again shown to follow a sim-
ilar trend. For the single resident results (see Fig. 3), the
dissimilarity measurements are almost all less than 0.25,
whereas for the cross-resident results (see Fig. 5) the dis-
similarity measurements are almost all greater than 0.25.
The nonimage-based CMs give adequate contrast between
different activity patterns as illustrated by the different
residents.
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Fig. 5. Weighted normalized Euclidean distance measures for the density

maps shown in Fig. 6 (multiresident). Each month is compared to the baseline
month, Resident #1.

VII. CASE STUDIES

The activity map visualization and dissimilarity measure were
applied to data logged in the homes of elderly TigerPlace res-
idents. Case studies for three residents are included next. The
dissimilarity is computed using the weighted normalized Eu-
clidean distance with a one-month window size.

A. Case Study #1

The left part of Fig. 7 shows the density map of a resident
for March 2006. The map indicates activity starting around
7 AM most days, suggesting the resident woke up regularly
in the morning. Similarly, he went to bed regularly around
9-10 pM. The TAFH areas (in black) suggest that he had three
meals in the dining room most days, but not always. In addition
to mealtime, this resident left home at other times. The right
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Fig. 6. Density maps used for Fig. 5. Each density map represents the pattern
of a different resident.
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Fig. 7. Case study #1: density maps, showing a decline in activity.

part of Fig. 7 shows the density map of the same resident for
September 2006 after depression was diagnosed. The color of
the September density map shows a lower level of activity, and
the TAFH areas are less frequent. These changes indicate that
the general activity level decreased from March to September.

The average TAFH of March 2006 and September 2006 is
178 and 168 min per day, respectively. The average density of
March 2006 and September 2006 is 96 and 77 sensor events/h,
respectively. From these two features alone, it is evident that the
activity level of this resident decreased. The dissimilarity mea-
sure between March 2006 and September 2006 is 0.21 which
represents a significant change, although not dramatic. The den-
sity maps for the two months show similar patterns in daily life,
but the color shows decreased motion density, which is consis-
tent with the higher dissimilarity measure.

In Fig. 7, there is a high-density hour in green at 10-11 AM
every Monday. These correspond to the weekly cleaning sched-
ule when a housekeeper is in the apartment. Also, note that the
first two waking hours tend to have a higher density than the
rest of the day. This is consistent for most of the residents; thus,
the morning hours after waking might be used to set a baseline
activity level for the day to look for activity changes that may
correspond to health changes.

B. Case Study #2

Fig. 8 shows four months of density maps from another resi-
dent. The January 2006 map shows a relatively active lifestyle.
From February 6-10, the resident had knee replacement surgery,
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Fig. 8. Case study #2: density maps tracking knee replacement surgery.

which is shown mostly as white in the February 2006 density
map, representing the extended absence of the resident. There
are a few areas of activity during this time, e.g., caused by the
housekeeper. The resident returned in the afternoon of Febru-
ary 10. From February 11-13, his family took care of him,
and because there are several people in the apartment, the map
shows a higher density during these days. He did not go out
for meals until breakfast on February 13. After the surgery, the
resident’s TAFH was less frequent compared to the previous
month, mostly for breakfast and dinner only. The early morning
density is reduced to 150-199 events/h. During the day time,
the higher density corresponds to more people in the apartment
helping the resident in his recovery.

The July 2006 map shows a return to a more active life. Com-
pared to February, he had improved considerably from the knee
surgery. The September 2007 map shows even more activity,
including evening activities. Compared to the previous density
maps, this map indicates a higher level of activity, even higher
than the month before surgery. Although he did not go out for
meals as regularly, his TAFH increased overall. The motion sen-
sors in the kitchen indicated that he prepared more meals in the
home (this is not shown in the density map). At the end of 2007,
he had recovered from the knee surgery very well.

Table II shows the dissimilarity measures of the density maps
in Fig. 8. The dissimilarity of February 2006 compared to Jan-
uary 2006 is 0.26, which indicates a substantial change, due
to the resident’s knee surgery and help during recovery. Com-
paring July 2006 to January 2006, the TAFH and the average
density are very similar. However, comparing density maps for
these months, one can see changes in the regularity of the TAFH.
The dissimilarity measure of the two months is 0.12, which in-
dicates moderate change in his daily life pattern, as captured
by the textural features. Comparing September 2007 to January
2006, both the TAFH and the density increase, and the pattern
of daily life changes; these lead to the dissimilarity increase of
0.27. His general activity level was higher after rehabilitation
than it had been before the knee replacement, as evidenced by
the average sensor events/h in Table II.

C. Case Study #3

May 2006, September 2006, and October 2007 in Fig. 9 are
three months of density maps for a third resident, with a different
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TABLE II
CASE STUDY #2 DISSIMILARITY OF DENSITY MAPS
Ave TAFH Ave Density Dis-similarity
min/day sensor events/hour to Jan. 2006

Jan. 226 87 0
Feb. 117 128 0.26
July 242 87 0.12
Sept. 243 106 0.27
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Fig. 9. Case study #3: density maps used for Fig. 10.
TABLE III
CASE STUDY #3 DISSIMILARITY OF DENSITY MAPS
Ave TAFH Ave Density sensor | Dis-similarity to
min/day events/hour May 2006
May 2006 247 203 0
Sept. 2006 247 150 0.13
Oct. 2007 168 132 0.24

lifestyle pattern and a higher level of activity than the previous
residents discussed. The resident has a puttering lifestyle and
moves from room to room frequently, possibly due to early de-
mentia. The density maps also show frequent periods of TAFH,
including in the late night hours, which was confirmed by the
staff. The dissimilarity results for these months are shown in
Table III. The activity level shows a significant decrease from
May 2006 to October 2007. The dissimilarity measure reflects
this change along with the periodicity changes shown in the
density maps.

For further investigation, we also look at the trend of the den-
sity maps over several months, from May 2006 to October 2007.
This resident was absent from TigerPlace for several months;
thus, some months are excluded in the study. Fig. 10 shows the
dissimilarity results for the density maps in Fig. 9, comparing
each month to May 2006. The map for July indicates a much
higher number of TAFH blocks and, as a result, is substan-
tially different from May. The month of October 2006 is the
most similar to May. Over time, this resident’s pattern begins to
shift. The periodicity changes, there are fewer TAFH periods,
and the overall activity level declines. Thus, the later months of
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Fig. 10. Dissimilarity results for case study #3, comparing each month to May
2006. Density maps are shown in Fig. 9.

TABLE IV
CROSS-RESIDENT DISSIMILARITY COMPARISON
Comparison months Dis-similarity
Case #1 Sept., 2006 to Case #2 Jan., 2006 0.39
Case #1 Sept., 2006 to Case #3 May, 2006 0.52
Case #2 Jan., 2006 to Case #3 May, 2006 0.30

September and October of 2007 indicate a higher dissimilarity
measure compared to May 2006.

D. Cross-Resident Dissimilarity Comparisons

As a further test of the density map dissimilarity measure,
we also compare representative monthly density maps from the
three case study residents discussed previously. Table IV shows
the dissimilarity comparison among the three cases. The resident
in case study #1 has a somewhat sedentary pattern of activity.
The resident in case study #2 is relatively active with a regu-
lar daily pattern. The resident in case study #3 shows a quite
different pattern of activity with frequent movement in a putter-
ing style but less regularity compared to the other residents. As
shown in Table IV, the dissimilarity results range from 0.30 to
0.52. The results show that the dissimilarity measure is sensitive
enough to catch lifestyle changes.

VIII. DISCUSSION AND CONCLUSIONS

Visualization of activity density maps and comparisons us-
ing the proposed dissimilarity measure are used to monitor the
long-term daily activity level of older adults. The approach is
independent of the floorplan, the number of sensors, or the firing
sequence, as it looks for changes from a baseline that provides a
personalized pattern of the resident. The color density map dis-
plays the activity level in an intuitive way and illustrates trends in
changing health conditions. The visualization of the color den-
sity map has received good responses from the nurses and other
clinicians on our team and is now used by the clinical staff at
TigerPlace to monitor health changes of the residents. The anal-
ysis through the dissimilarity measure provides an automated
method for detecting changes in the patterns of residents that
will aid caregivers in the monitoring process. Different window
sizes can be selected as desired, with a fixed baseline period or
even a sliding baseline. It is unclear what the optimal baseline
strategy is for early illness detection. This will require further
investigation.

There are limitations in using the PIR data. The PIR motion
sensor cannot identify specific individuals. Thus, the system
will contain a degree of ambiguity as to who performed the
activity (e.g., resident or visitor), and it is also a challenge to

identify the number of persons in an apartment. Second, the
motion sensor fires at most every 7 s if there is motion nearby,
and useful information can be lost because of the 7 s resolution.
On the other hand, the motion sensors used in this project are
inexpensive and readily available. The system is affordable, easy
to deploy, and nonintrusive.

Future research will expand on feature extraction and auto-
mated reasoning at different time scales using the logged sensor
data, focusing especially on early detection of pattern changes.
Although the dissimilarity measure does not indicate the direc-
tion of the change, we will investigate the use of the average
density per day and the TAFH events for assessing whether the
health condition is improving or declining. We have also begun
to investigate circadian patterns using the PIR data, similar to
approaches used with actigraphy data [12].

Automated reasoning will provide cues of potential problems
in mobility or cognition as suggested by the logged data. The
decision-making process for this type of sensor network will
always be associated with some uncertainty. Thus, fuzzy logic
systems provide a good strategy for managing the uncertainty
by exploiting a tolerance for imprecision in order to interpret
ambiguity. The main goal of our extended research team is to
introduce advanced sensor reasoning, novel signal and image
processing, and high level reasoning to enhance the indepen-
dence and safety of older people while maintaining privacy and
minimizing interference.

ACKNOWLEDGMENT

The authors acknowledge the contribution and support of the
MU eldertech research team and the reviewers for their helpful
comments in improving this paper.

REFERENCES

[1] M.J.Rantz, K. D. Marek, M. A. Aud, H. W. Tyrer, M. Skubic, G. Demiris,
and A. A. Hussam, “A technology and nursing collaboration to help older
adults age in place,” Nurs. Outlook, vol. 53, no. 1, pp. 40-45, Jan./Feb,
2005.

[2] P. Glascock and D. M. Kutzik, “Behavioral telemedicine: A new ap-
proach to continuous nonintrusive monitoring of activities of daily living,”
Telemed. J., vol. 6, no. 1, pp. 33—44, 2000.

[3] K. Z. Haigh, L. M. Kiff, and G. Ho, “Independent lifestyle assistant:
Lessons learned,” Assist. Technol., vol. 18, pp. 87-106, 2006.

[4] M. Ogawa, R. Suzuki, S. Otake, T. Izutsu, T. Iwaya, and T. Togawa, “Long-
term remote behavioural monitoring of the elderly using sensors installed
in domestic houses,” in Proc. 2nd Joint EMBS/BMES Conf., Houston, TX,
2002, pp. 1853-1854.

[5]1 R. Beckwith, “Designing for ubiquity: The perception of privacy,” Per-
vasive Comput., pp. 40-46, Apr./Jun. 2003.

[6] T. S. Barger, D. E. Brown, and M. Alwan, “Health-status monitoring
through analysis of behavioral patterns,” IEEE Trans. Syst., Man, Cybern.
A, vol. 35, no. 1, pp. 22-27, Jan. 2005.

[7] J. Lundell, T. L. Hayes, S. Vurgun, U. Ozertem, J. Kimel, J. Kaye,
F. Guilak, and M. Pavel, “Continuous activity monitoring and intelligent
contextual prompting to improve medication adherence,” presented at the
Int. Conf. IEEE Engineering in Medicine Biology Soc., Lyon, France,
Aug. 23-26, 2007.

[8] P. Cuddihy, R. T. Hinman, A. Avestruz, E. C. Lupton, G. Livshin,
J. L. Rodriguez, S. B. Leeb, C. M. Clark, K. J. Horvath, L. Volicer,
B. Landfeldt, J. Kay, R. Kummerfeld, A. Quigley, D. West, T. Apted,
G. Sinclair, D. J. Haniff, R. Kalawsky, D. Atkins, M. Lewin, S. J. Brown,
N. Shahmehri, J. Aberg, D. Maciuszek, and 1. Chisalita, “Successful ag-
ing,” Pervasive Comput., vol. 3, no. 2, pp. 48-50, Apr.—Jun. 2004.

[9] J.Kaye, S. Maxwell, N. Mattek, T. Hayes, H. Dodge, M. Pavel, H. Jimison,
K. Wild, L. Boise, and T. Zitzelberger, “Intelligent systems for assessing



614

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 16, NO. 4, JULY 2012

aging changes: Home-based, unobtrusive and continuous assessment of
aging,” J. Geron. B Psych. Sci., vol. 66B, pp. 180-190, 2011.

H. Pigot, B. Lefebvre, J. G. Meunier, B. Kerhervé, A. Mayers, and
S. Giroux, “The role of intelligent habitats in upholding elders in resi-
dence,” presented at the Int. Conf. Simulations in Biomedicine, Ljubljana,
Slovenia, Apr. 2003.

P. Paavilainen, I. Korhonen, and M. Partinen, “Telemetric activity mon-
itoring as an indicator of long-term changes in health and well-being of
the elderly,” Gerontechnology, vol. 4, pp. 77-85, 2005.

J. Howell, B. M. Strong, J. Weisenberg, A. Kakade, Q. Gao, P. Cuddihy,
S. Delisle, S. Kachnowski, and M. S. Maurer, “Maximum daily 6 minutes
of activity: An index of functional capacity derived from actigraphy and
its application to older adults with heart failure,” J. Amer. Geriatr. Soc.,
vol. 58, no. 5, pp. 931-936, May 2010.

M. Philipose, K. P. Fishkin, M. Perkowitz, D. J. Patterson, D. Fox,
H. Kautz, and D. Hhnel, “Inferring activities from interactions with ob-
jects,” Pervasive Comput., vol. 3, pp. 50-57, 2004.

1. Korhonen, J. Parkka, and M. Van Gils, “Health monitoring in the home
of the future- infrastructure and usage models for wearable sensors that
measure health data in the daily environment of the users,” /EEE Eng.
Med. Biol. Mag., vol. 22, no. 3, pp. 6673, May/Jun. 2003.

P. Sungmee, M. Kenneth, and J. Sundaresan, “The Wearable motherboard:
A framework for personalized mobile information processing (PMIP),” in
Proc. 39th Design Automat. Conf., 2002, pp. 170-174.

P. K. D. Marculescu and R. Marculescu, “Challenges and opportunities
in electronic textiles modeling and optimization,” in Proc. 39th Design
Automat. Conf., 2002, pp. 175-180.

J. E. T. Martin, M. Jones, and R. Shenoy, “Towards a design framework
for wearable electronic textiles,” in Proc. 7th IEEE Int. Symp. Wearable
Comput., 2003, pp. 190-199.

G. Demiris, M. J. Rantz, M. A. Aud, K. D. Marek, H. W. Tyrer, M. Skubic,
and A. A. Hussam, “Older Adults’ attitudes towards and perceptions of
‘Smarthome’ technologies: A pilot study,” Med. Inform. Internet Med.,
vol. 29, no. 2, pp. 87-94, Jun. 2004.

E. Kim, S. Helal, and D. Cook, “Human activity recognition and pattern
discovery,” Pervasive Comput., vol. 9, pp. 48-53, 2010.

P. Rashidi and D. Cook, “Keeping the resident in the loop: Adapting
the smart home to the user,” [EEE Trans. Syst., Man, Cybern. A, Syst.,
Humans, vol. 39, no. 5, pp. 949-959, Sep. 2009.

A. Helal, D. Cook, and M. Schmalz, “Smart home-based health platform
for behavioral monitoring and alteration of diabetes patients,” J. Diabetes
Sci. Tech, vol. 3, no. 1, pp. 141-148, Jan. 2009.

N. M. Barnes, N. H. Edwards, D. A. D. Rose, and P. Garner, “Lifestyle
monitoring: Technology for supported independence,” Comput. Control
Eng. J.,vol. 9, pp. 169-174, Aug. 1998.

S. Brown, B. Majeed, N. Clarke, and B. S. Lee, “Developing a well-being
monitoring system- modeling and data analysis techniques,” in Promoting
Independence for Older Persons with Disabilities, W. Mann and A. Helal,
Eds. Washington, DC: IOS Press, 2006.

M. J. Rantz, M. Skubic, R. Koopman, L. Phillips, G. L. Alexander, and S.
J. Miller, “Using sensor networks to detect urinary tract infections in older
adults,” in Proc. IEEE Int. Conf. e-Health Netw. Appl. Serv., Columbia,
MO, Jun. 13-15, 2011, pp. 142—-149.

G. Demiris, D. O. Parker, G. Dickey, M. Skubic, and M. Rantz, “Findings
from a participatory evaluation of a smart home application for older
adults,” Technol. Health Care, vol. 16, no. 2, pp. 111-118, 2008.

M. Skubic, G. Alexander, M. Popescu, M. Rantz, and J. Keller, “A smart
home application to eldercare: Current status and lessons learned,” Tech-
nol. Health Care, vol. 17, no. 3, pp. 183-201, 2009.

G. L. Alexander, M. Ranrz, M. Skubic, R. J. Koopman, L. J. Phillips,
R. D. Guevara, and S. J. Miller, “Evolution of an early illness warning
system to monitor frail elders in independent living,” J Healthc. Eng.,
vol. 2, no. 2, pp. 337-363, 2011.

M. J. Rantz, M. Skubic, G. Alexander, M. Popescu, M. Aud, R. Koopman,
and S. Miller, “Developing a comprehensive electronic health record to
enhance nursing care coordination, use of technology, and research,” J.
Gerontol. Nurs., vol. 36, pp. 13—17, 2010.

Z. Yuejun and W. Mingguang, “Design of wireless remote module in
X-10 intelligent home,” in Proc. IEEE Int. Conf. Ind. Tech., Dec. 2005,
pp. 1349-1353.

D. Mack, M. Alwan, B. Turner, P. Suratt, and R. Felder, “A passive
and portable system for monitoring heart rate and detecting sleep ap-
nea and arousals: Preliminary validation,” presented at the Transdisci-
plinary Conf. Distributed Diagnosis and Home Healthcare, Arlington, VA,
2006.

[31]

[32]

[33]

[34]

[33]

[36]

S. Wang and M. Skubic, “Density map visualization from motion sensors
for monitoring activity level,” in Proc. IET Int. Conf. Intell. Environ.,
Seattle, WA, 2008, pp. 64-71.

T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applica-
tion to modeling and control,” /EEE Trans. Syst., Man, Cybern., vol. 15,
no. 1, pp. 116-132, Jan. 1985.

C. Godsey and M. Skubic, “Using elements of game engine architecture
to simulate sensor networks for eldercare,” in Proc., Int. Conf. IEEE Eng.
Med. Biol. Soc., Minneapolis, MN, Sep. 2009, pp. 6143-6146.

X. Chen, Z. He, D. Anderson, J. Keller, and M. Skubic, “Adaptive sil-
houette extraction and human tracking in complex and dynamic envi-
ronments,” in Proc. Int. Conf. Image Process., Atlanta, GA, Oct. 2006,
pp. 561-564.

S. Wang, M. Skubic, and Y. Zhu, “Activity density map dissimilarity
comparison for eldercare monitoring,” in Proc. Int. Conf. IEEE Eng. Med.
Biol. Soc., Minneapolis, MN, Sep. 2009, pp. 7232-7235.

A. Bemasconi, S. B. Antel, D. L. Collins, N. Bernasconi, A. Olivier,
E Dubeau, G. B. Pike, E Andermann, and D. L. Arnold, “Texture anal-
ysis and morphological processing of magnetic resonance imaging assist
detection of focal cortical dysplasia in extra-temporal partial epilepsy,”
Ann. Neurol., vol. 49, pp. 770-775, 2001.

Shuang Wang received the B.S. degree in electronics
and information technology from Beijing Union Uni-
versity, Beijing, China, in2001. She received the M.S.
degree in electrical engineering and the Ph.D. degree
in electrical and computer engineering, in 2007 and
2011, respectively, both from the University of Mis-
souri, Columbia.

She was with Emerson Electronic Holdings Co.
and China Mobile before beginning graduate studies.
Her research interests include computational intelli-
gence, pattern recognition, and eldercare technology.

Marjorie Skubic (S’90-M’91) received the Ph.D.
degree in computer science from Texas A&M Uni-
versity, College Station, TX, in 1997, where she spe-
cialized in distributed telerobotics and robot program-
ming by demonstration.

She is currently a Professor in the Department
of Electrical and Computer Engineering, University
of Missouri, Columbia, with a joint appointment in
Computer Science. In addition to her academic ex-
perience, she has spent 14 years working in industry
on real-time applications such as data acquisition and

automation. Her current research interests include sensory perception, computa-
tional intelligence, spatial referencing interfaces, human-robot interaction, and
sensor networks for eldercare. In 2006, she established the Center for Eldercare
and Rehabilitation Technology at the University of Missouri and serves as the
Center Director for this interdisciplinary team. The focus of the center’s work
includes monitoring systems for tracking the physical and cognitive health of
elderly residents in their homes, logging sensor data in an accessible database,
extracting activity and gait patterns, identifying changes in patterns, and gener-
ating alerts for health changes.

Yingnan Zhu received the B.E. degree in elec-
tronic engineering from Tsinghua University, Bei-
jing, China, the M.S. degree in electrical engineering
from the Chinese Academy of Sciences, Beijing, and
the Ph.D. degree in computer science from the Uni-
versity of Missouri, Columbia, in 2001, 2004, and
2009, respectively.

He is currently with Samsung Digital Media Solu-
tions Lab , Irvine, CA. He was a summer intern at the
Thomson Corporate Research, Princeton, NJ, from
2006 to 2008. His research interests include multi-

media communication, peer to peer networks, internet protocol television, and
wireless mesh networks.



