
  

  

Abstract— Falling is a common health problem for elderly. It 
is reported that more than one third of adults 65 and older fall 
each year in the United States. To address the problem, we are 
currently developing an acoustic fall detection system, FADE, 
which automatically detects a fall and reports it to the 
caregiver. In a previous version, FADE used a 3-microphone 
linear array to eliminate the false alarms produced by sounds 
produced well above the floor level. To improve the fall 
detection in noisy and reverberant environments, we replaced 
the linear array by an 8-microphone circular array that can 
provide a better 3-D estimation of the sound location. 
Preliminary experiments show that the sound location 
estimation performed by the circular array is reliable and 
robust to interference. We obtained encouraging classification 
results on a pilot dataset with 55 falls and 120 non-fall sounds. 

I. INTRODUCTION 
  ORE than one third of about 38 million adults of 65 and 
older fall each year in the United States [1]. A fall can 

cause serious health problems such as head injuries and hip 
fractures [1]. Moreover, older people who live alone have a 
further increase in early death risk due to the likely inability 
to ask for assistance after a fall occurs [2]. The annual risk 
for a person living alone of being found helpless or dead at 
home by paramedics is about 3.2% [3]. The delay in 
hospitalization can increase mortality risk in some 
conditions, such as hip fracture or traumatic brain injuries 
[3]. Other studies have shown that the longer the lie on the 
floor, the poorer is the outcome of the medical intervention 
[3-4]. To address the problem of medical intervention delay, 
it is imperative to detect the falls as soon as they occur such 
that immediate assistance be provided.  

A variety of fall detection methods have been published in 
the recent scientific literature. There are two main types of 
fall detection devices: wearable and non-wearable. Wearable 
devices, like accelerometer-based ones, detect falls by 
measuring the applied acceleration along the vertical axis. 
The wearable devices are versatile and effective both indoor 
and outdoor but they are, in general, rejected by older, more 
frail people [5]. Among the non-wearable devices, we 
mentioned floor vibration sensors [6], video cameras [7,8], 
infrared cameras [9] and smart carpets. The floor vibration 
sensors [6] are inexpensive and privacy preserving but their 
performance is questionable in most of the US nursing 
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homes due to the ground-level concrete floors covered by 
carpet, that vibrate little on impact. Video cameras, infrared 
cameras and smart carpets are promising technologies that 
are still trying to address challenges related to low light, 
field of view and privacy. Ideally, the goal of a fall detection 
system is to have as few false alarms as possible while 
detecting all falls. In order to achieve this goal, we believe 
that several different sensors have to be integrated in a smart 
network architecture. Consequently, the developing of 
different fall sensing modalities is a necessity for a 
successful sensor fusion approach.  

In previous papers [10-12] we described an acoustic 
human fall detection system (FADE) based on a linear array 
of microphones. We investigated several fall detection 
algorithms such as fuzzy rule systems [10] and one-class 
classifiers [11]. However, both approaches had limited 
success in reducing the false alarms due to the 
environmental interference, in part, because neither of them 
took into account spatial information related to the sound 
source. In another version of FADE [12], we showed that 
using sound source height information can greatly reduce the 
false alarm rate. That is, sound sources located above a 
certain height (e.g. 1 m) above the floor, like talking or 
preparing food, are directly filtered out. Only sounds located 
at the floor level, such as falls or steps, are passed to the 
classification algorithm. This approach not only reduces the 
false alarm rate but it also increases the computation 
efficiency. However, the height estimation accuracy is 
influenced by the acoustic properties of the environment. For 
instance, noise and reverberation present a great challenge 
for sound localization. To better deal with environmental 
challenges in source localization, in this paper we propose to 
use of an 8-microphone array for person tracking and fall 
detection. 

The sound localization technique has been applied to 
many applications such as videoconferencing [13], human-
robot interaction [14] and bird monitoring. Multiple acoustic 
sensors are required in order to suppress the noise and 
improve the sound quality for recognition purpose [13]. 
Among the algorithms for sound localization, the time delay 
of arrival (TDOA) [12,14] and phase transform (PHAT) [13] 
are often used.  

In this paper, we describe a robust microphone-array-
based fall detection system (FADE) that is able to estimate 
the 3-D sound source location, in terms of not only the 
height but also the DOA (Direction of Arrival) and range. 
The specific sound localization algorithm used in this paper 
is called spectrum response power-PHAT (SRP-PHAT) [15-
17]. For the sound classification task, we use mel-frequency 
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cepstral coefficients (MFCC) together with a nearest 
neighbor approach, as proposed in [12].  

The structure of the paper is as follows: in section II we 
present the architecture of FADE, in section III we briefly 
describe the steered response power estimation using phase 
transform (SRP-PHAT) and the algorithm for sound 
localization, in section IV we show the results of our 
preliminary testing and in section V we conclude the paper. 

II. SYSTEM ARCHITECTURE 
The architecture of the FADE system is shown in Fig. 1. 

Fig. 1 The proposed fall detector architecture 

The fall detector consists of a circular array of 8 
microphones. Each microphone has a mini amplifier and is 
mounted on a Cana Kit UK009 board. The microphones are 
installed on a plywood board in a circular pattern with a 25 
cm radius. While a greater radius would improve the 
detection performance, it also limits the deployment options 
in an apartment setting. The array radius, R, was chosen 
based on the simulation results presented in Section IV.A. 
The microphone array board was hanged vertically on a wall 
in our lab at about 1.5 m above the floor, with the 
microphone side pointing away from the wall. The working 
hypothesis for FADE is that the person is alone in the 
apartment (room) hence only moving person has to be 
tracked. If motion is detected during a given interval (one 
minute) after a fall event is computed as likely, the caregiver 
alert is not issued. Instead, the event that provoked the alarm 
is cataloged as a false alarm and used to retrain the 
classifier(s). In order to preserve the privacy of the resident, 
the sound will be internally processed on a microprocessor 
board and only an external fall signal (email or pager) will 
be sent to the caregiver.  

In this paper, we are mainly interested in investigating the 
sound localization and classification methods for fall 
detection. That is, we do not consider the motion detector 
and the communication processing with the caregiver. The 
sound is recorded using a National Instruments data 
acquisition card NI 9201 with 8-channel analog inputs. 
Currently, the localization and classification of the recorded 
sound are performed using Matlab 
(http://www.mathworks.com) installed on desktop computer 
instead of using a microprocessor board. 

III. ALGORITHM DESCRIPTION 
The main steps of the signal processing algorithm were: 

sound localization and fall recognition. 

A. Sound localization using SRP-PHAT algorithm 
The signal received by the ith microphone, mi(t), can be 
modeled as: 

,       (1) 
where s(t) is a single sound source at an unknown position, 
τi is the time delay between the source and the ith 
microphone, αi is the attenuation factor of mi(t) propagated 
along the ith path and ni(t) is an uncorrelated white noise 
process. The purpose of SRP for a single source is to search 
for a steering 3-D spatial vector that maximizes the 
likelihood function f(.), as described by: 

,  (2) 
where  is the estimated location and J is the global 
maximum response power occurred at location . The main 
idea of the likelihood function is to align in time the 
microphone signals mi(t) based on the measured delays 
∆τi=τi - τ0 (τ0 is the reference time delay estimated as the 
minimum among all the delays), then sum the aligned 
signals to compute the response power. Note that for each 

in space, the delays ∆τi are uniquely determined and 
denoted by As proposed by [15-16], the SRP 
is seen as the cross-correlation power over pairs of 
microphones. By subtracting the total energy at all 
microphones from the squared delay-and-sum term and 
taking the time average of the residue gives the standard 
SRP likelihood function for an M-microphone array as  

  (3) 
in which the environment attenuation factor is modeled as 
the normalized reciprocal of the ith propagation distance di, 

that is, . The time interval (t0, tl) is the 
processing window which covers all aligned signals. The 
PHAT version of the SRP likelihood function is obtained by 
multiplying the cross-correlation spectrum with a weighting 
factor Φij. Thus, by taking Parseval’s theorem of the first 
term in , we can derive the SRP-PHAT likelihood 
expression as: 

(4) 
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where the frequency-dependent weighting factor Φij is 
generally defined as the inverse magnitude of the cross-
spectrum, that is: 

              (5) 

B. Fall recognition 
Before extracting the sound features, an energy 

discriminator is used to select the frames with energy larger 
than a threshold value, ET. For each selected frame, we 
extracted the MFCC features. We computed N MFCC 
features (coefficients) but we ignored the first one in the 
recognition procedure, as proposed in [12]. We chose N=7 
based on fall detection experiments described in section 
IV.C. The recognition was performed using the nearest 
neighbor (NN) procedure. The "fall" and "non-fall” training 
samples used in the NN procedure were recorded by the 
same person that performed the test session. A fall has to be 
detected in at least two consecutive windows in order to be 
reported as such. The fall confidence, C, is calculated as 

 where δi = 1 if a fall has been detected in 
channel i, and 0 else. A threshold , ∈[0,1], is then used to 
declare a "fall" if C > . A flowchart of the fall recognition 
algorithm used in this paper is presented in Fig. 2. Source 
localization was not used in the fall recognition experiments 
presented in Section IV.C, but will be part of the final 
system. 

 
 

Fig. 2. The flowchart of fall detection algorithm used in this paper. 

IV. RESULTS 
In order to determine the behavior of the acoustic fall 
detector for various microphone array sizes and levels of 
background noise, we performed some initial experiments 
using a Matlab acoustic array simulation toolbox, 
ArrayToolbox [15, 18].  

A. The choice of array radius, R 
For determining the array radius, R, we radiated a 1-second 
duration of clean footstep signal at a specified location and 
simulated the received signals at all 8 microphone channels 
using the propagation attenuation and the time delay derived 
from the distances between the source and the microphone 
receivers. Omi-directional background noise (pre-recorded 
fan and computer noise) at 30 dB SNR was added to the 
microphone signals. The noise values at different 
microphone channels were independent of each other. The 
localization algorithm was then applied to the simulated 
signals to determine the source location. The room was 
modeled as a 7m×5m×2.5m parallelepiped. The sound 
source was placed at 5 locations in the room along an arc 
having a 3.5m radius from the array center (3.5m, 1.5m, 
0m,) in the xy-plane (x, y, 0). At each location, we computed 

the root-mean-square error of DOA, range and height using 
200 ensemble runs. The averaged DOA, height and range 
root-mean-square errors over the 5 locations are shown in 
Fig. 3. Fig. 3 indicates that height error is nearly 0 for 
R=25cm. Moreover, the DOA and range error curves are 
becoming closer to their minimum values for the same 
radius. 

  
Fig. 3. Average DOA, range and height errors, at five locations. 
 

While, theoretically, a larger array would result in better 
localization performance, a smaller array is often preferred 
in practice. Hence, we chose R=25 cm for the microphone 
array. 

B. The influence of noise on the array tracking ability 
For the tracking experiment, we used 12 possible 

locations of the sound source arranged in the (x,y) plane as 
in Fig. 4. We assumed that the source signal moved from 
one location to the next in a sequential manner and the 
microphone array tracked the location of the source. 

 
Fig. 4. Circular array (red dots) and 12 sound locations used in the footsteps 
tracking experiment 
 

A foot-step signal was radiated at each location and 
collected together from the 12 locations as shown in Fig. 5.  

 
Fig. 5. Simulated signal used in the foot-steps tracking experiment 

 
A sliding window of 1 sec. was used to segment out the 

microphone array data passed to the localization algorithm 
to estimate the source position. By varying the noise level 
added to the signal sequence, we obtained the localization 
results in height as shown in Table I. At a given SNR, the 
height error shown is the average of the absolute errors at the 
12 locations. 
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TABLE I 
AVERAGE HEIGHT ERROR VS. NOISE LEVEL 

NOISE SNR (DB) -10 0 10 20 30 
HEIGHT ERROR (M) 0.47 0.26 0.14 0.09 0.07 

A sample of the estimated accuracy projected in the x-y 
plane is illustrated in Fig. 6. 

 
   a) SNR=-10 DB       b) SNR=30 dB 
Fig. 6. Localization error at specific room locations for 2 SNR levels (o-
original location, + =computed). 

Table I shows that the maximum average height error was 
about 0.5 m when SNR=-10dB. The corresponding range 
error (see Fig. 6.a) is more severe, about 1-2 m. Depending 
on applications, the location error at -10dB SNR may still be 
acceptable. Otherwise, it is necessary to maintain a higher 
SNR to achieve better accuracy. It should be noted that as 
the SNR improves, the error reduces significantly. 

C. Pilot fall recognition experiment 
For the fall recognition experiment we recorded in our lab 

a training set of 25 falls (on a mat) and 50 false alarms 
(talking, key sounds, typing, phone ringing, soft and hard 
cover books dropped on the floor). The test set contains 30 
falls and 120 false alarms. Each event had a duration of 0.5 s 
and was sampled at a frequency of 20,000Hz. 

The sound features used were the MFCC coefficients. 
After training, the algorithm shown in Fig. 2 was applied to 
the test set. When varying the number of MFCC coefficients 
used in the classifier, a set of ROC curves are obtained as 
shown in Fig. 7. 

 
Fig. 7. The ROCs of the fall recognition experiment 

The best result was observed when using 6 MFCC 
coefficients (i.e. 2th to 7th). The area under the curve in this 
case is 0.98. Only 6 false alarms were misclassified, while 
all 30 falls were detected. 

V. CONCLUSIONS 
In this paper we presented an audio sensor array designed 

for person tracking and fall detection. Key design features of 

the array such as the number of microphones, the preamp 
setting and radius, were determined using a Matlab array 
simulation toolbox. Due to the lack of space, we only 
presented the array radius choosing procedure, the other 
choices being done in a similar fashion. 

While we showed that person tracking is a possibility, we 
have not implemented a complete audio tracking algorithm. 

Preliminary fall recognition results are encouraging, 
although more realistic experiments such as fall in presence 
of noise (such as TV) are necessary. 
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