
 

Abstract—The National Institutes of Health (NIH) Sleep 
Disorders Research Plan expresses a need for methods that can 
non-invasively monitor sleep characteristics.  Forty subjects 
were tested using a novel, passive ballistocardiography-based 
system during an overnight study.  We examined our system’s 
ability to measure heart rate as compared to EKG while we 
also investigated our system’s apnea and arousal detection 
capabilities as compared to conventional polysomnography.  
We found a strong correlation (r = 0.972, p < 0.0001) in average 
heart rate computed over 480 thirty-second epochs when our 
method was compared to EKG.  Additionally, we achieved a 
sensitivity of 89.2% and specificity of 94.6% in the automated 
detection of apneas.  Similarly we attained a sensitivity of 
77.3% and a specificity of 96.2% in the detection of arousals. 
These preliminary results demonstrate the effectiveness of our 
portable ballistocardiography-based system as compared to 
polysomnography and show promise that high quality sleep 
assessment can be performed in a home environment. 

Index Terms— Ballistocardiography, Sleep Analysis and 
Monitoring, In-Home Health Monitoring, Telemedicine, Sleep 
Apnea. 

I. INTRODUCTION

LEEP deprivation is a common problem in the 
industrialized world.  The National Sleep Foundation 
(NSF) reports that for adults to function properly they 

should obtain 7-9 hours or more of sleep per night [1].  
According to the 2005 “Sleep in America” poll conducted by 
the NSF, about 26% of adults are getting at least 8 hours of 
sleep a night during the week, while 49% do so on 
weekends.  This continues the downward trend seen over the 
last five years.  Additionally, 75% indicated they had at least 
one symptom of a sleep disorder, such as snoring or reduced 
sleep efficiency, a few nights per week in the last year.  
However, 76% do not believe they have a sleep problem and 
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only 45% would talk to their doctor if they thought they did 
[2].  Sleep disorders cost the U. S. economy about $46 
billion a year in lost productivity [3].  Nonetheless, sleep 
disorders like apnea, which affects more than 12 million 
Americans [4], can lead to severe consequences if left 
untreated.  Yearly, 38,000 deaths are associated with 
complications from sleep apnea and those that suffer from 
apnea are 3-6 times more likely to suffer a stroke [3].   

According to the National Institutes of Health (NIH) 
Sleep Disorders Research Plan, current methods for 
measuring breathing abnormalities are cumbersome, 
expensive, lack predictive power, and are useless for 
screening large populations. To further challenge sleep 
studies, there is no comprehensive database that defines 
normal sleep-wake patterns based on age or gender.  As a 
result, the NIH identifies a need for new methods that can 
non-invasively monitor sleep and respiration to quantify 
breathing problems and their consequences [5].  
Longitudinal, non-invasive sleep monitoring using validated 
assessment and screening tools has the potential to become 
useful in sleep analysis and possibly provide predictive data 
for the development of sleep related disorders. 

The Non-Invasive Analysis of Physiological Signals 
(NAPS) system that was tested in this study was designed 
and developed at the Medical Automation Research Center 
at the University of Virginia.  It uses ballistocardiography 
(BCG) to detect minute forces generated during cardiac 
contraction and relaxation, and can also detect body 
movement from respiratory effort and postural changes. 
Preliminary data [6], [7] have shown strong correlations 
between the heart rate passively measured using the NAPS 
system and conventional clinical techniques such as pulse 
oximetry.  The NAPS system relies on a highly sensitive 
pressure transducer pneumatically connected to a compliant 
force-coupling pad installed on top of the mattress of any 
standard bed, on which the subject lies in order to acquire 
the data.  Multiple pads can be used to acquire data from 
different parts of the body.  The system is sensitive enough 
to gather data even when sheets and blankets are applied 
over the sensor, which rests on the mattress.  The analog 
signal is filtered and amplified before being digitized by A-
to-D converters. An algorithm has been developed to 
provide automatic scoring of the instantaneous heart rate and 
respiration data recorded by the NAPS system. Additionally, 
the passive nature of the NAPS system allows data to be 
recorded longitudinally and to establish personalized norms 
for individuals that can be used to detect changes in 
physiological parameters, and/or to assess the efficacy of 
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interventions.  The NAPS system has already proven useful 
as a home-health tool for qualitative sleep assessment in an 
assisted living environment [8].  It provided professional 
caregivers a better picture of their resident’s sleep patterns 
and key information to help assess changes in their health 
conditions.  To supply even more information for this 
environment and to prove useful as a clinical sleep analysis 
tool, the NAPS system is undergoing validation against 
polysomnography, the clinically accepted standard of sleep 
analysis. This paper presents the preliminary validation 
results.   

II. METHODS

A. Study Design 
This study was reviewed and approved by University of 

Virginia’s Institutional Review Board (IRB), known as the 
Human Investigation Committee (HIC), and the General 
Clinical Research Center (GCRC) Committee.  All subjects 
were educated to the study specifics and informed consents 
were obtained prior to their participation in the study.  Forty 
generally healthy adult subjects had an overnight sleep study 
with conventional polysomnography at the University of 
Virginia Health System’s GCRC Sleep Laboratory.  The 
subject population (32 men, 8 women) was quite diverse in 
age, height, weight and resulting apnea-hypopnea index 
(AHI) as noted in Table I below.  Additionally we achieved 
a racial demographic similar to that of the surrounding 
geographical area according to recent census data [9].   

TABLE I
SUBJECT DEMOGRAPHICS

Parameter Mean Standard 
Deviation Minimum Maximum

Height (in) 68.8 4.0 58.9 77.2
Weight (lbs) 203.8 50.4 127.8 318.8

Age (yrs) 45.0 17.0 18.0 79.0
AHIa 24.6 29.3 0.4 95.6

aAHI = Apnea-Hypopnea Index 

The study subjects were simultaneously monitored using 
the NAPS system, outfitted with two compliant force-
coupling pads and four temperature sensors, and 
conventional polysomnography.  Synchronization of the data 
was achieved by asking the subjects to sit up and lie down in 
bed three times following the bio-calibration of the 
polysomnography equipment.  This created movement 
artifacts in both the polysomnography and NAPS data that 
could be easily reconciled.  Data were recorded for the entire 
night, which was set by the “lights off” and “lights on” times 
of the polysomnography study. 

After the polysomnography data was scored by a trained 
sleep technician, it was verified by a sleep physician.  
Twenty of the subjects had an AHI greater than 10.0 while 
twenty were under this threshold.  This AHI value separates 
normal and mild cases of sleep apnea syndrome (SAS), 

called the control group, from the moderate to severe cases, 
the group considered to have sleep apnea.  

The scope of this paper is to report on our initial findings 
based on two three-minute segments from each subject’s 
study.  They were randomly selected based on the 
requirement that one three-minute segment be from a portion 
of Stage 4 sleep free from apnea and arousal events while 
the other contain at least one apnea as recorded in the 
polysomnography reports.  Two subjects never reached 
Stage 4 sleep, so both segments had apneas and arousals 
present.  In total, over the 40 subjects studied, this amounts 
to four hours of data broken up into 480 thirty-second 
epochs.  Once these data were isolated from the entire night 
studies, we compared manually scored EKG data, averaged 
over thirty second epochs, to automatically scored NAPS 
heart rate data, which was calculated over the same thirty 
second epochs.  Additionally, we compared apneas, 
hypopneas and arousals detected with polysomnography to 
those detected by the NAPS system.   Though this portion of 
the NAPS data analysis was only partially automated, a set 
of rules was developed and followed to enable automated 
event detection, which is one of our future directions.  For 
both the heart rate and event comparisons of the first 27 
subjects (~67%) were used to help develop the algorithms 
and scoring rules, while the last 13 subjects (~33%) were 
used as the test set. 

B. Data Acquisition of EKG System 
A trained sleep technician fitted the appropriate 

polysomnography sensors to each subject and monitored the 
hardware throughout the night.  Sleep was monitored with 
electroencephalograms, electrooculograms, submental 
electromyograms and leg electromyograms.  Breathing was 
monitored with nasal airflow detected by nasal pressure, oral 
airflow with a thermistor, and thoracic & abdominal 
movement with respiratory inductive plethysmography, as 
well as pulse oximetry.  Electrocardiogram was monitored 
on one channel sampled at 128 Hz.  All data was recorded 
on a Sandman® Computerized Sleep System.  The same 
technician performed the sensor hookups for all 40 subjects 
and also manually scored each of the datasets.  Raw data 
from each of the channels were provided to us for analysis.  
Additionally, files reporting detailed information of the 
various events that occurred during the night (i.e. apneas, 
arousals, bad data, etc) were also provided to us for analysis.  
Fig. 1 shows an example of the EKG data obtained. 

C. Data Acquisition of NAPS system 
The NAPS system deployed in this study used two 

compliant force-coupling pads that provided cardio-
pulmonary data from the upper chest at the approximate 
level of the heart and the abdomen area above the waist.  
These pads were attached to a 3 foot square bed pad that was 
then secured under the normal linens to the mattress; each of 
the pads was pneumatically connected to a pressure sensor.  
This configuration ensured consistency of spacing between 
the two pneumatic pads throughout the study.  No 
adjustments were made to the hardware during the course of 
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the study.  Positional pad placement adjustments, if 
necessary, were made at the beginning of the study to 
provide proper positioning of the pad with respect to the 
height of study participants.  There were no restrictions on 
the subject’s sleeping position or orientation following the 
initial adjustment.  The signal from each pressure sensor was 
pre-amplified and then split into respiration and heart rate 
signals using analog filters, and the output signals were 
digitized by a USB compliant A-to-D converter.  This A-to-
D converter sampled each of the four channels (two cardiac 
and two respiration signals) at 150 Hz.  The data were 
transferred 30 seconds at a time to a computer database 
where it was stored for later analysis.  Fig. 2 shows an 
example of the NAPS system’s pulse data from the same 
time period as the EKG data in Fig. 1. 
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Fig. 2.  Example of NAPS Waveform – 10 second sample 

D. NAPS Software Analysis 
The raw data acquired by the NAPS system was pre-

processed using bi-directional recursive filtering to ensure 
that no phase shift was introduced into the filtered data while 
smoothing, unlike a typical moving average approach.  The 
analysis to yield heart rate data averaged over thirty-second 
epochs was fully automated by an algorithm developed by 
this author. Two different methods were used to detect the 
position of the systolic portion of each BCG wave.  The first 
involved simple derivative and threshold peak detection 
while the second looked for changes in the direction of 
relative trough position. The latter technique was performed 
with varying upper limit levels for the heart rate to enable 
selection of consistent and accurate data.  By using this 
technique, a heart rate is computed in a similar way to 
counting R-R intervals of an EKG.  Instantaneous heart rate 

was reported on a beat-by-beat basis for each epoch and the 
median was used as the heart rate for that epoch.  This 
ensured eliminating the influence of outliers on the average 
data.  Iterative and statistical selection was employed to 
choose the highest quality, most consistent data available for 
each epoch.  Specifically, the algorithm generated a quality 
score based on instantaneous heart rate consistency on a 
beat-by-beat basis, clustering of data near the average, and 
the percentage of beats obtained during the epoch.  If 
excessive movement was present or exceedingly low quality 
data was reported during a specific epoch, no heart rate data 
was reported.  To prevent large errors, mostly due to 
movement artifacts, we implemented an automated 
correction method that selected a heart rate closer to the rest 
of the recorded values in the selected three-minute set.  This 
correction scheme was applied in cases where only one of 
the heart rates computed out of the six thirty-second epochs 
in the three-minute data set was much higher or lower than 
the average, or if one was extremely below the average 
while another was extremely above the average.  This only 
occurred in 10 of the 480 cases (2%).  Parameters of the 
automated heart rate algorithm were optimized over the first 
27 subjects and tested over the last 13 subjects. 

The respiration analysis was partially automated to detect 
and align breaths recorded by the two compliant force-
coupled pads of the NAPS system.  Additionally, the 
algorithm normalized the three-minute block of breathing 
data based on the average amplitude obtained from each pad.  
We examined the clinical and research definitions of 
breathing events during sleep, as recently defined by the 
American Academy of Sleep Medicine [10], to provide 
physiological basis in setting the NAPS system’s criteria for 
establishing apneas and arousals.   These criteria were then 
applied to the breathing signals to automatically classify 
each breath as possible movement/arousal class (amplitude 
over 140% or containing a minimum amount of postural 
movement) or possible apnea class (amplitude under 75% or 
gaps in the signal with minimal postural movement present).  
Breaths were examined for a potential arousal or apnea 
based on the class to which they were assigned.  Phase 
change and relative amplitude of the two breathing signals 
were also examined and scored automatically.  During 
normal breathing, the two signals should be closely matched 
in terms of phase as well as normalized amplitude around 
100%, which is not the case during an apnea or arousal.  An 
automated scoring system was established to characterize the 
severity of contributing factors.  The manual portion of the 
algorithm involved applying a set of rules for marking 
apneas and arousals based on the scoring system and 
classification of breaths.  Minor exceptions were also 
applied including extended movement during an apnea class 
breathing segment being marked as an arousal or allowing 
extended gaps that sometimes occurred between or during 
epochs to contribute to apnea class breathing segments.  The 
latter provided a way to detect apneas even if they occurred 
over multiple epochs or were central in nature.  Parameters 
of the apnea/arousal algorithm were optimized over the first 
27 subjects and tested over the last 13 subjects. 
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III. RESULTS & DISCUSSION

A. Average Heart Rate Value Calculation 
The NAPS average heart rate was highly correlated with 

the EKG average heart rate (r = 0.972, p < 0.0001) as shown 
in Fig. 3.  The NAPS System failed to produce an average 
heart rate for an epoch 10.6% of the time where the majority 
of those were due to movement artifacts.  Of the detected 
heart rates, 80.0% were at or below the standard error of 
±2.54 beats per minute (BPM).  The standard error for the 
delta sleep portion of the data was ±2.20 BPM while the 
standard error for the segments with at least one apnea 
present was ±2.83 BPM.  This is due to the increased 
movement and breathing anomalies that occur during and 
immediately following apneas and arousals, which can 
adversely affect the NAPS heart rate signal quality. 
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Fig. 3.  NAPS vs. EKG Average Heart Rate 

B. Apnea and Arousal Detection 
Using 2-way contingency comparisons, we compared 

apneas and arousal events detected with the NAPS system to 
those detected with polysomnography.  We did not 
discriminate between central and obstructive apneas and 
included all hypopneas as well.  Overall, we achieved a 
sensitivity of 89.2% and specificity of 94.6% in the detection 
of apneas with a kappa correlation coefficient of 82.8%.  
The kappa correlation was chosen since the technician 
scored polysomnography data is also subject to errors.  
Moreover, we obtained a sensitivity of 77.3% and a 
specificity of 96.2% in the detection of arousals with a kappa 
of 73.0%.  In examining the aggregate detection of apneas 
by computing an AHI for the four hours of data, we found 
strong agreement between the NAPS system (33.8) and 
polysomnography (32.5).  Similarly, we computed an 
arousal index that also showed agreement between the 
NAPS system (16.8) and polysomnography (16.5).  
Additionally, standard errors of ±9 seconds in detecting the 
start time of apneas and ±7 seconds for arousals were 
attained.  Finally, the average length of apneas and arousals 
were closely matched to their respective polysomnography 
values (1% error in average apnea length, and 4% error in 
average arousal length).  The results presented here show 
that the NAPS system not only detected the right number of 
events, but also exhibited high timing alignment of events as 
compared to polysomnography.

IV. CONCLUSIONS

The average heart rate and apnea/arousal events were 
captured with a high degree of accuracy across a wide 
variety of subjects.  These preliminary results demonstrate 
the effectiveness of the NAPS system as compared to 
conventional polysomnography.  They also suggest that high 
quality sleep assessment can be performed by our passive 
and portable system, which make it an excellent candidate 
for home use.

V. FUTURE DIRECTIONS

The next step in the development of the NAPS system 
will be to fully automate the algorithm and perform the full 
night analysis on each of the 40 study subjects.  We will run 
the developed algorithms on the remainder of the collected 
data sets (as a validation data set) to provide a full validation 
of the NAPS system against polysomnography.  Moreover, 
we will explore the NAPS system’s ability to identify sleep 
stages. 
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