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Abstract

Producing linguistic summaries of large databases or temporal sequences of measurements is an endeavor that is receiving
increasing attention. These summaries can be used in a continuous monitoring situation, like eldercare, where it is important to
ascertain if the current summaries represent an abnormal condition. It is therefore necessary to compute the distance between
summaries as a basis for such a determination. In this paper, we propose a dissimilarity measure between summaries based on fuzzy
protoforms, and prove that this measure is a metric. We take into account not only the linguistic meaning of the summaries, but also
two quality evaluations, namely the truth values and the degrees of focus. We present examples of how the distance metric behaves
and show that it corresponds with intuition.
© 2012 Elsevier B.V. All rights reserved.
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1. Introduction

As data sets from sensors and other sources become increasingly large, methods to summarize the data and to an-
alyze these summaries are more and more important. Acknowledging the uncertainty in summarizing large amount
of data, the fuzzy set community has investigated several approaches for linguistic summarization [1-4,15,25-27,31].
Many times, summaries are produced with the understanding that people will read them and take appropriate action.
For example, summaries of nighttime motion and restless of an elder resident can offer indications to the health care
professionals of potential abnormal conditions [30]. However, as the nature and magnitude of sensor and other data
collection grows, so does the complexity and quantity of the set of linguistic descriptions. Hence, it is necessary to
perform some automated analysis of this condensed information. In order to make decisions such as “today is normal
for Mr. Smith” or “Mrs. Jones is much better this week than she was last week”, some form of distance is required
between, in the above case, temporal summaries of sensor data. We can even consider clustering summaries instead
of the raw or processed data, as was done in [28]. In the case of static databases, for instance, information about
employees of companies, we might want to determine that company A is closer to company B than to company C
with respect to employee makeup and benefits (as derived though summarization). While there are myriad of applica-
tions of linguistic summarization, many focus on time series analysis. In [4], such temporal linguistic summarization
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was applied to patient inflow in a medical center. Both [5,18] consider comparison of time series from a summarization
standpoint. The latter approach, for example, was applied to the analysis of investment fund quotations. Whatever
the application, having a metric between individual linguistic summaries is the first step towards building automated
analysis algorithms for linguistically aggregated data.

In this paper, we create protoform-based linguistic summaries [19,20,30] in the sense of [31]. We propose a similar-
ity/dissimilarity measure for those linguistic summaries, and prove that the proposed dissimilarity measure is a metric
on the space of protoform summaries. The distance measure is studied analytically when the quantifiers are LR fuzzy
numbers, examined through simulation, and applied to summaries from both a toy example and real data. One simple
example we use here is a collection of balls. The linguistic summaries can be exemplified by “most balls are big”,
“most of heavy balls are big”, etc. Sets of these summaries are computed, distances are calculated and we show that
they match our intuition. As a real world example, we apply the new metric to linguistic summaries generated from
sensor data for a resident of TigerPlace, an “aging-in-place” facility in Columbia, MO [24]. Here also, we establish the
potential of distance calculations on linguistic summaries of nighttime sensor firing.

2. Linguistic summaries of data

Linguistic summaries of data are usually short (quasi-)natural language sentences that capture the very essence of
the set of data, that is numeric, large, and because of its size, not comprehensible to a human.

We use the following notation from [31]: Y = {y1, y2, ..., yn} is the set of objects (records), e.g., night times for an
elder or balls in a collection; A = {Ay, A, ..., Ay} is the set of attributes (features) characterizing objects from Y.

A linguistic summary includes:

e a summarizer P, i.e., an attribute together with a linguistic value (fuzzy predicate) defined on the domain of attribute
Aj (e.g., large for attribute size);

e a quantity in agreement Q, i.e., a linguistic quantifier (e.g., most);

o truth (validity) 7 of the summary, i.e., a number from the interval [0, 1] assessing the truth (validity) of the summary
(e.g.,0.7);

e optionally, a qualifier R, i.e., another attribute together with a linguistic value (fuzzy predicate) defined on the domain
of attribute Ay determining a (fuzzy) subset of Y (e.g., heavy for attribute weight).

Basically the core of a linguistic summary is linguistically quantified and may be written as a simple protoform:
Qy’s are P (1)
or as an extended protoform:
QORy’s are P 2)

Here, Q, P and R are modeled by fuzzy sets over appropriate domains. The truth (validity), 7, of a linguistic summary
directly corresponds to the truth value of (1) and (2). The truth may be calculated using either original Zadeh’s calculus
of quantified propositions (cf. [32]) or other interpretations of linguistic quantifiers. In the former case the truth values
of (1) and (2) are calculated, respectively, as

1 n
T(Q y'sare P) = g (; Zw(y») 3)
i=1

Yo p(¥i) A HR(yi)) @

it mr(vi)

where A is the minimum operation (more generally it can be another appropriate operator, notably a -norm), and Q is
a fuzzy set representing the linguistic quantifier that is normal and monotone.

Note that in most applications, both the fuzzy predicates P and R are assumed to be of a rather simplified, atomic form
referring to just one attribute. They can be extended to cover more sophisticated summaries involving some confluence
of various attribute values as, e.g., “heavy and red” balls. To combine more than one attribute value, like P; and P>,
we will use -norms (for instance, the minimum or product) for conjunction. Actually, since the domains of P; and P>

T(QR y’sare P) = pg <
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for such a compound attribute are different, the conjunction must take the form of the cylindrical closure in the cross
product space [21]. Theoretically we may use a corresponding s-norm (for instance, the maximum or probabilistic sum,
respectively) for disjunction of attributes, but such summaries appear to be not as meaningful as conjunctions for the
domain experts.

Another very useful quality criterion of the linguistic summary is the degree of focus, introduced by Kacprzyk and
Wilbik [17]. The very purpose of a degree of focus is to limit the search for the best linguistic summaries by taking
into account some additional information in addition to truth values. The extended protoform linguistic summaries (2)
does limit by itself the search space as the search is performed in a limited subspace of all (most) objects that fulfill an
additional condition specified by qualifier R. The very essence of the degree of focus is to give the proportion of objects
satisfying property R to all objects. The role of the degree of focus is similar to the concept of support in association
rules in a data mining context [29]. It provides a measure that, in addition to the basic truth value, can help control the
process of discarding non-promising linguistic summaries.

n
dfoc(QR y’s are P) = % > g 5)
i=1

The degree of focus in this form exists only for summaries of extended protoforms. We fix it to 1 for simple protoform
linguistic summaries.

If the degree of focus is high, then we can be sure that such a summary concerns many objects (records), so that it
is more general. When the degree of focus is low, such an abstraction describes a (local) pattern that occurs seldom.

Those two criteria are not the only ones. More on linguistic summaries, especially in the context of time series, can
be found in [29]. In [23] there is a novel approach for generating these linguistic summaries, as they provide some rules
on how to discard non-interesting or not promising summaries.

3. Similarity evaluation

In this section, we describe how to compute the proposed degree of similarity or distance between two linguistic
summaries.

Consider two summaries Q1R y’s are P| and Q;R; y’s are P, with the truth values 7; and 75, respectively. The
qualifiers Ry and/or R, may be empty in case of simple protoform summaries.

The degree of similarity is computed as the minimum of the following four elements:

e Similarity of the summarizers P; and P,. The formula for calculating this similarity depends if the summarizers
describe the same attributes or not. Namely,

. . (a [(up, prz))
P, P) = - = 6
sim(Py, P») mln(b f(,upl .UPZ) (6)

where a is the number of joint (common) attributes for summarizers Py and P, and b is the number of distinct attributes
used in summarizer P; or Ps, i.e., a/b is the Jaccard measure [16] of the sets of attributes for the summarizers P}
and P,. Also,

J(up, N pip,)
J(up, U pp,)

is the Jaccard measure of the summarizers where up and pp, are the membership functions of fuzzy sets used to
model the summarizers P; and P,. Note that if the summarizers contain more than one attribute we operate on their
cylindrical extensions [21].

e Similarity of the quantifiers Q1 and Q, computed using the Jaccard measure, i.e.,

[g, N,
J(rg, Yng,)

where up, and iy, are the membership functions of fuzzy sets used to model the linguistic quantifiers Q0 and Q5.

sim(Q1, Q2) = )
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e Similarity of the truth values 77 and 7, of the summaries QR y’sare Py and Q> R, y’s are P, respectively,
computed as

sim(Ty, 1) =1~— Ty — 11| (8

where | - | denotes the absolute value of the difference.

e Similarity of the qualifiers R; and R;. Note that in case of simple protoform summaries R is absent, and so, R should
be treated as being the fuzzy set that characterizes the whole universe, Y, i.e., the set whose membership is 1 for all
y. The similarity of the qualifiers, sim(R1, R3), is defined as the minimum of two elements:

o Similarity computed using the Jaccard measure of fuzzy sets Ry and R»,

S (ug, Mgy
S (g, U pigy)

where pig and up, are the membership functions of fuzzy sets used to model the qualifiers R} and R,. Note that
if the qualifiers contain more than one attribute we consider their cylindrical extensions.

o Similarity between the values of the degree of focus for those two summaries, computed as 1 — [d foc(Q1 Ry y’s are
P1) —dfoc(Q2R2 y’s are Py)|.

Hence,

J (tr, N igy)

f (#Rl U 'uRz)

Thus, if the two protoforms are simple, sim(R1, Ry) = 1, since the degrees of focus are zero and the fuzzy sets are
the universe set.

sim(Ry, Ry) = min ( s 1 —ldroc(Q1R1 y’sare P1) —dfoc(Q2R2 y’s are Pz)l) (&)

Finally, the total similarity between two protoform linguistic summaries is defined as
sim(Q1Ry y’s are P, Q2Ry y’s are P») = min(sim(P1, P2), sim(Q1, Q2), sim(7T1, T), sim(R1, R2)) (10
Alternatively we may use the notion of dissimilarity, which is defined as

d(Q1R; y’sare P, Q2Ry y’sare Py) =1 —sim(Q1R; y’s are P1, Q2R y’s are P») (11)

We now show that the proposed dissimilarity in (11) is a metric over the space of protoform summaries. Note that the
dissimilarity measure produces values in the range [0,1].

Lemma 1. The Jaccard distance is defined as d(A, B) = 1 — |AN B|/|A U B| and if |A| denotes the cardinality of
the set A (standard cardinality for crisp sets, Sigma-count for fuzzy sets) is a metric.

Proof. The fact that the Jaccard distance is a metric and is crucial to the proof of our main result, and so, we give a
proof here that comes from results in the literature. A direct algebraic alternative proof is given in the Appendix.
There is an equivalence between the triangle inequality of a dissimilarity measure d and the 77 -transitivity (with 77,
the Lukasiewicz t-norm) of the corresponding similarity measure (obtained through complementation). So, d(A, B) +
d(B,C) =d(A, C) if and only if max(sim(A, B) + sim(B, C) — 1, 0)<sim(A, C) [12,13].
Moreover the Jaccard measure on crisp and on fuzzy sets (using sigma-count) is 77 -transitive [9,8]. The latter is
proven more generally using meta-theorems on sigma-counts and for a broad class of similarity measures [10,11].
Thus, the Jaccard measure is a metric. [

Lemma 2. Suppose that di,d» : M x M — [0, 1] are two metrics on the same space. Then d(x,y) = max
(di(x, y), da(x, y)) is also a metric.
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Proof. Clearly, Vx, y d(x, y)>0 and d(x, y) = 0 if and only if x = y and that d(x, y) = d(y, x).

We show the triangle inequality: Vx, y, z d(x, z2)<d(x, y) +d(y, z). Suppose that d; (x, z)>da(x, z). Then d(x, z) =
di(x, 2)<di(x, y) + di(y, )< max(di(x, y), d2(x, y)) + max(di(y, z), d2(y, z)) = d(x,y) + d(y, z). Similarly, the
results hold when d(x, z)>d;(x, z). Thus, the max of two (or a finite number) of metrics is a metric. [

We are now ready to prove the main result.

Theorem 1. The dissimilarity

d(Q1R1y’s are P1, Q2Ryy’s are Ps)
=1- mln(Slm(Pl 5 P2)5 Slm(Q15 Qz)a Sim(ﬁ5 75)’ Slm(Rla Rz))
= max(l — sim(Py, P»), 1 —sim(Q1, Q3), 1 —sim(Ty, Tr), 1 — sim(R1, Ry))

is a metric on the space of protoform summaries.

Proof. Note that

1 —sim(P;, P) =1 — min (a M) — max (1 _ a 1 f(,l.tpl m,ll]:@))

b’ [(up, Upp,) b J(up, Upp)

Now, 1 — a/b as well as

S up N ppy)
J(up, Upip,)

are both Jaccard metrics by Lemma 1, the first over the crisp set of attributes and the second between the fuzzy sets
that define the summarizers. Hence, 1 — sim(P, P>) is a metric by Lemma 2.

Additionally, we have that 1 — sim(Q1, Q2) is a metric.

Clearly, 1 —sim(7;,73) =1 — 1+ |7] — 7| = |71 — 73|, the 1-norm, is a metric.

For the fourth factor, we have

S (g, N pg,)
J(ug, Upg,)

— max (l B S (ug, Mgy
S (ug, U g,

I —sim(Ry, R2) =1 — min < = ldgoc(Q1R1y’s are Pr) — dpoc(Q2Ray’s are Pz)l)

JNdroc(Q1R1y’s are Py) — dfoc(Q2Ray’s are Pz)l)

Again

1 S (ug, N pg,)
S (ug, U ng,)

is a Jaccard distance and |d roc(Q1R1Y’s are P1) — droc(Q2R2Y’s are P»)| is the 1-norm.
Therefore, all four elements 1 — sim(Py, Pp), 1 —sim(Q1, Q2), 1 —sim(1y,T3), 1 —sim(R1, R») are metrics, and
so, their maximum is also a metric. [

This is not the only possibility. Instead of the Jaccard distance we could use other similarities (cf. [6,7,22]). If the
corresponding dissimilarity between the fuzzy sets is a metric, then the dissimilarity between summaries will also fulfill
the metric properties. Moreover it is also possible to combine the four elements not with the minimum but, for instance,
with the weighted average, and it would also satisfy the metric properties. In the case of weighted average, there is a
problem on how to choose weights. Additionally, if the regular average is used, the differences between summaries are
not as visible as in case of using the minimum. The other possibilities will be investigated in a subsequent paper.
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4. Numerical examples

In this section we present several examples from two domains: linguistic summaries of two boxes containing a certain
number of balls of various sizes, weights, condition, age, colors, etc., and a real world example from ongoing work in
eldercare. We begin with the simple toy problem for the purpose of analyzing the metric.

Every attribute (feature) is described with some linguistic values, which are modeled as fuzzy sets with trapezoidal
membership functions. An example of such a function, Trap[a,b,c,d], is shown in Fig. 1.

We use the following linguistic values:

e size expressed in inches from 0 to 10—small (Trap[0,0,2,4]), medium-size (Trap[2,4,6,8]), large (Trap[6,8,9,10]),
huge (Trap[8,9,10,10]);

e weight in pounds (also from 0 to 10)—Iight (Trap[0,0,2,4]), medium-weight (Trap[2,4,6,8]), heavy (Trap[6,8,10,10]);

e age in years—new (Trap[0,0,0.5,1]), old (Trap[3,5,10,10]);

e color, e.g., based on the Hue value—red (Trap[-30,-20,20,30]), green (Trap[90,100,140,150]), blue (Trap[210,220,
260,270]), reddish (Trap[-120,-60,60,120]).

For the example, the linguistic quantifiers are: almost all (Trap[0.9,0.95,1,1]), most (Trap[0.5,0.8,1,1]), many
(Trap[0.3,0.6,1,1]), a few (Trap[0.01,0.1,0.3,0.5]) and none [4](Trap[0,0,0.01,0.02]).

We start with a few general observations. Assume that a summary “Many balls are large” with truth value of 7;
describes the first box, while a summary “Many balls are large” with truth value of 7, describes the second one.
In Fig. 2 we show how the distance of those two summaries changes with the change of the values of the truth values
71 and 7. If those truth values are equal the distance equals 0, as expected.

Now let us analyze the following two summaries:

e Many balls are large; T = 1.
e Many balls are huge; 7 = 1.

a b c d

Fig. 1. Trapezoidal fuzzy membership function used in the numeric examples, denoted by Trap[a,b,c,d].

distance

Fig. 2. Protoform distance between two identical summaries with differing truth values.
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Fig. 3. Distance between large and huge as large changes size.

We examine the effect of the fuzzy set definitions on the distance value. In the Appendix, we develop the equations for
the Jaccard distance (the foundation of our metric) in the case that the fuzzy sets are defined as L—R fuzzy numbers
[14] to study the behavior of this metric. We further specify this formulation to the trapezoidal numbers we use here.
Assume huge is defined as a fuzzy set with a trapezoidal membership function Trap[8,9,10,10], that can be represented
as LR fuzzy set Trap[m — a,;m — b,m + c,m + d], where m is the center of the trapezoid and a, b, ¢ and d are the
distances to the change points left and right reference functions (see Appendix) and m = 9.5. Large is defined as
[m —1.5,m — 0.5, 10, 10]. Fig. 3 depicts the distance between the two summaries as the definition of large changes,
depending on the value of m.

For small values of m the distance is large, since large is much bigger than huge. As the values of m increase the
distance becomes smaller, and it is equal O for m = 9.5. In this case both fuzzy sets large and huge are identical. Then
the distance becomes bigger since area of large is getting smaller and smaller. For m bigger than 10.5 there is only
a small triangle left of large, until m = 11.5, where large is equal 0 everywhere. Fig. 3 thus depicts graphically the
analysis found in the Appendix.

In Fig. 4 we show the distance of the two summaries: “many balls are huge” and “many balls are large” with respect
to the area of intersection of the fuzzy sets large and huge. In this case the definition of huge (fuzzy set) is fixed and we
modify and shift the membership function of large. The solid line represents a case when the area of large is the same
as the area of huge (equal in the case depicted to 1.5). The dashed lines are examples of large sets with area smaller
than that of huge, and the dotted lines represent large sets with area bigger than that of huge. The numbers define the
area of the large set.

Now we consider some other linguistic summaries related to the example:

s1: most of balls are large, T = 0.75;

s2: many balls are large, T = 0.9;

s3: many balls are huge, 7 = 0.8;

s4: many balls are new, T = 0.8;

s5: many balls are large and new, 7 = 0.7,

sg: many new balls are large, T =1, dfoc = 0.6;
s7: many red balls are large, T = 0.85, d o = 0.3;
sg: a few balls are large, 7 = 0.1,

s9: a few balls are of medium size, T = 0.8;

s10: a few balls are small, T = 0.85;

s11: a few of red and new balls are large, T = 0.7, dfoc =0.2.

The matrix of the distances for those pairs of summaries is presented in Table 1.
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Fig. 4. Effects of shifting the definition of large across that of huge. The different curves represent different areas under the trapezoidal definition of
large.

Table 1

The matrix of distances between summaries.

Summaries S1 $2 53 S4 S5 S6 57 58 59 S10 S11
51 0.00 0.36 0.50 1.00 0.93 0.93 0.86 1.00 1.00 1.00 1.00
52 0.36 0.00 0.50 1.00 0.93 0.93 0.86 0.95 0.95 1.00 0.99
53 0.50 0.50 0.00 1.00 0.96 0.93 0.86 0.95 1.00 1.00 0.99
S4 1.00 1.00 1.00 0.00 0.70 1.00 1.00 1.00 1.00 1.00 1.00
S5 0.93 0.93 0.96 0.70 0.00 0.93 0.93 0.95 0.99 1.00 0.99
56 0.93 0.93 0.93 1.00 0.93 0.00 0.99 0.95 0.95 1.00 0.95
57 0.86 0.86 0.86 1.00 0.93 0.99 0.00 0.95 0.95 1.00 0.95
S8 1.00 0.95 0.95 1.00 0.95 0.95 0.95 0.00 0.92 1.00 0.99
59 1.00 0.95 1.00 1.00 0.99 0.95 0.95 0.92 0.00 0.92 0.99
510 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.92 0.00 1.00
S11 1.00 0.99 0.99 1.00 0.99 0.95 0.95 0.99 0.99 1.00 0.00

Note that all the elements on the main diagonal are equal to 0 as in this case we compare two identical summaries,
and of course, the matrix is symmetric. Other summaries are far away from each other. We analyze a few examples.

Summaries sy and s3: Large and huge are the summarizers in sp and s3, both referring to the attribute size. They
are quite similar notions with similar fuzzy sets describing those two notions. The Jaccard similarity of the fuzzy sets
representing those linguistic terms is 0.5; hence sim(P;, P>) = 0.5. In both summaries the same quantifier many was
used; therefore sim(Q1, Q2) = 1. The similarity of the truth value is sim(7;, 73) = 1 — 0.9 — 0.8] = 0.9. Thus the
degree of the similarity of 57 and s3 is equal to 0.5 and the distance to 0.5, a reasonable value.

Summaries s1 and sy: The difference in the above two summaries is the quantifier most and many. The Jaccard
similarity of those two fuzzy sets is equal to 0.64. The similarity of the truth values is equal to 0.85. Hence, the
similarity is equal to 0.64 and the distance to 0.36. It is intuitive that s, is closer to s than it is to s3.

Summaries s and s4: The above two summaries are not similar, i.e., their distance is equal to 1 because the
summarizers refer to different attributes, i.e., large describes the size, while new refers to age.

Summaries s> and ss: In this case, the above summaries are similar to a small degree of 0.2 and their distance is
equal to 0.8. It is so because the Jaccard similarity of the fuzzy values of the summarizers: large and “large and new”
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a huge b large and new

Fig. 5. Membership functions of huge (a) and “large and new” (b).

is equal 0.2. Note also that the similarity of attributes in the summarizer is equal to 0.5 because the sets of attributes of
the summarizers are partially different. The summary s5 contains additional information in comparison to the summary
s> and this is the reason why they are not very similar.

Summaries sy and sg: In this case we compare a simple protoform summary with an extended one. The similarity
of the qualifier new and “empty set of qualifiers” denoting whole space is equal to 0.2 and as it is the smallest value of
all similarities, the distance of these two summaries is equal to 0.8. Similarly as in the previous example summary s¢
contains additional information, hence their similarity is low.

Summaries s3 and ss5: In Fig. 5 we show the membership functions of the summarizers of the summaries s3 and s5.

Note that their intersection will be very small, hence the similarity of huge and “large and new” is low. Hence the
overall similarity of those two summaries is low.

Summaries s¢ and s11: In those two summaries only summarizers are identical. Hence we need to compare quantifiers,
qualifiers and the truth values. Qualifiers many and a few are not similar with the Jaccard similarity equal to 0.05. Also
qualifiers new and “light and new” are of low similarity. Note there is a significant difference in values of the degrees
of focus. The truth values are quite similar. As we can see those two summaries are not similar with the distance
of 0.95.

Summaries sy and s10: The distance of this pair of summary is equal to 1, since the large and small are linguistic
values with different meanings. This result is clearly intuitive.

Now we present examples from a real world application. In [30] we showed linguistic summaries generated over a
15 month period for a male resident, of TigerPlace about 80 years old. He had a past history of syncope, bradycardia
with pacemaker placement in 2002. He suffered from stenosis of carotid arteries, hypertension and probable transient
ischemic attacks. He had a bypass surgery (CABG) in December 2005 and a stroke in December 2006. Based on the
nurses notes describing his medical history, we distinguished some periods like after CABG or stable time. We used
the nighttime sensor firings for two types of sensors: bed restlessness and motion in the apartment, which illustrates
bed movement and movement around the apartment during every day. We described each attribute (one for each type
of sensor) with three linguistic values low level, medium level and high level.

For the time after CABG (surgery) we obtained the following linguistic summaries:

e C1: After CABG, on most nights the resident had a high level of restlessness; 7 = 0.79, d foc = 1.0.

e C;: After CABG, on most of the nights, when the resident had a high level of motion, he had also a high level of
restlessness; 7 = 1.0, dfoc = 0.58.

e C3: After CABG, on most of the nights, when the resident had a low level of motion, he had also a low level of
restlessness; 7 = 1.0, dfoc = 0.22.

e (C4: After CABG, on most of the nights, when the resident had a low level of restlessness, he had also a low level of
motion; 7 = 0.83, d o = 0.27.
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Table 2
Distances between the linguistic summaries from stable time and after CABG period.

Cl CZ C3 C4
S1 0.99 0.99 0.95 1
S 1 1 1 0.94

After the surgery we may observe two types of behavior. The first behavior (top two summaries) is characterized with
high level of restlessness, sometimes together with high level of motion. It means that he was not sleeping well, moving
a lot in the bed, and also getting up often. Nurses’ notes confirmed that the resident was suffering pain during this time
period which could contribute to increased restlessness and lack of sleep.

The second behavior (last two summaries) occurred with low level of restlessness and low level of motion around
the apartment; however the degree of focus of those two summaries are not very high, so it means it did not last a very
long time. Nurses’ notes confirmed that the resident was visiting his family around that time.

After the surgery and the rehabilitation the resident returned to his normal level of restlessness and motion detected
at night, what can be seen on the following summaries:

e S§1: During stable time, on most nights the resident had a medium level of restlessness; 7 = 1.0, d foc = 1.0.
e S»: During stable time, on most nights the resident had a medium level of motion; 7 = 1.0, d foc = 1.0

The distance between the individual summaries for these periods are shown in Table 2.

The large distances in Table 2 clearly demonstrate the dissimilarity between the two periods.

Sometimes more detailed description may be required, for example of a single night. In this case we summarize the
number of sensor firings in 15-min-slots during the nighttime, defined here as from 9pm till 7am. In this small example
we are using the sensor data for the same resident. However, our data come from two sensors only: bed restlessness
and bedroom motion, which illustrates the bed movement while lying in the bed and movement around the bedroom
during the night. As an example we analyze one night after CABG period and two nights during the stable time, and
we show both the linguistic summaries obtained and the distances between them. We use only three linguistic values
for each attribute: low (Trap[0,0,2,5]), medium (Trap[2,5,12,15]) and high (Trap[12,15,50,50]).

The set of linguistic summaries generated for a night from after CABG time (January 12, 2000) is

e s11: almost all 15-min-slots are low motion, 7 = 1.0, d o = 1.0;

o s12: about a half of the 15-min-slots are high restlessness, 7 = 1.0, d o = 1.0;
o s513: a few 15-min-slots are low restlessness, 7 = 1.0, d o = 1.0;

e s514: afew 15-min-slots are medium restlessness, 7 = 1.0, dfoc = 1.0

and the linguistic summaries generated for a night from the stable time (August 15, 2006) are

s521: almost all low restlessness 15-min-slots are low motion, 7 = 1.0, d o = 0.72;
§22: most 15-min-slots are low motion, 7 = 1.0, d o = 1.0;

$23: most low motion 15-min-slots are low restlessness, 7 = 0.94, d o = 0.87;
s24: many 15-min-slots are low motion and low restlessness, 7 = 0.91, dfoc = 1.0;
§75: many 15-min-slots are low restlessness, 7 = 1.0, d o = 1.0;

$26: a few 15-min-slots are medium restlessness, 7 = 1.0, droc = 1.0.

The distance matrix of linguistic summaries for the two nights described above is shown in Table 3. This matrix
compares two nights that are dissimilar. As intuitively expected, the linguistic summaries for those two nights are
different, and we observe many distance values close to 1.

In Table 4 we present the distances of two nights from the stable time. The three linguistic summaries describing
this night are

o s531: almost all low restlessness 15-min-slots are low motion; 7 = 1.0, d 7o = 0.66;
® s532: most 15-min-slots are low motion; 7 = 1.0, dgoc = 1.0;
e s33: many low motion 15-min-slots are low restlessness; 7 = 1.0, dfoc = 0.88.
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Table 3
Distance matrix of linguistic summaries for the nights of January 12, 2006 and August 15, 2006.

S11 S12 S13 S14
521 0.96 1.0 1.0 1.0
522 0.7 1.0 1.0 1.0
523 1.0 1.0 1.0 1.0
524 0.96 1.0 1.0 1.0
8§25 1.0 1.0 1.0 1.0
526 1.0 0.95 0.93 0.0

Table 4
Distance matrix of linguistic summaries for the night of March 18, 2006 and August 15, 2006.

$31 $32 533
521 0.06 0.96 1.0
522 0.96 0.0 1.0
523 1.0 1.0 0.29
524 0.96 0.96 0.96
525 1.0 1.0 0.96
526 1.0 1.0 1.0

All three of the summaries for the second night are similar (small distance value) to one of the summaries from the
first night.

As we see from this small example, the proposed similarity/distance metric provides the potential for automatically
determining baseline activity and for detecting anomalous nights.

In the eldercare domain, computational complexity is not a big issue. Although the apartment of a resident may
contain 30 different sensors, not all combinations make sense or are interesting for the experts (nurses). Hence in this
framework only one set of summaries will be generated per day, which will be compared with those from some recent
time frame, say the last two weeks (a good window span for comparison according to the health care providers).

5. Conclusions

A distance metric for linguistic summaries will enable many automated analysis activities to be performed on this
compact representation of large data sets. In this paper, we defined a similarity measure for protoform summaries. The
measure involves the linguistic summarizers, the truth values, the linguistic quantifiers and, in the case of extended
protoforms, the linguistic qualifiers and degrees of focus. We then proved that the corresponding dissimilarity measure
is a metric over this space of summaries. The properties of the metric were examined through two examples, a toy
problem and data from sensor summarization in Eledercare where the results matched (our) intuition on the closeness
of summaries.

Summaries are not, in general, isolated events. There may (should) be several that describe various aspects of the
data. For example, in a sensor-based monitoring of elders, we can easily have a dozen or more summaries to describe
the health related events of a given night: different levels of bed restlessness, motion in the bedroom, wandering in other
rooms, number and frequency of bathroom visits, and so on. We want to compare last night with the previous night
or with last week, this week with a week last month, this week with a “normal” week, etc. We now can measure the
distance of each summary of the first group to each of the second. We are currently investigating methods of aggregating
these distances to provide a global assessment. Future work involves temporal clustering of sets of summaries to define
a possibly moving normal state as well as the efficacy of groups of linguistic summaries and their distances with respect
to health care professionals.
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Appendix

In this Appendix we provide an algebraic alternative proof of Lemma 1 and more analysis of the properties of Jaccard
distance of two fuzzy sets. The proof of Lemma 1 was already published [8§—13]. Here we present a more direct one.

Proof.

(1) VA, Bd(A, B)>0and d(A, B) = 0 if and only if A = B. Since |A N B|<|A U B|, |AN B|/|A U B|<1, and so,
d(A,B)=1—]ANB|/|AU B|>0. Also,d(A, B) =1—|AN B|/|AU B| =0ifandonlyif |AN B|/|[AUB| =1
if and only if |A N B| = |AU B|if and only if A = B.

2)VA,Bd(A,B)=d(B,A).d(A,B)=1—|ANB|/|[AUB|=1—|BNA|/|IBUA|=d(B, A).

(3) VA, B,C d(A, C)<d(A, B) + d(B, C) Suppose that this is not true, i.e., there are sets A, B, and C such that
d(A,C) > d(A, B)+d(B, C). Then

IANC] |AN B IBNC
_ o1 _
|[AUC] |AU B| IBUC

or
IANB| |BNC| |ANC]
— >
JAUB| ' |BUC| |ANC]

Since we postulate that the triangle inequality does not hold, we want the left hand side of this last inequality to be
as small as possible. It is sufficient only to consider the cases where A C B or B C A, since, if not, for B = AN B
we have

|AﬁB’|_ |A N B| >|AﬁB|

[AUB/| |AU(ANB)|~|AUB|

and so, we can replace either A or B with A N B and obtain
IANB'| |BNC| |AﬂC|>|AﬂB| [IBNC| |ANC]|
[AUB’| |BNC| |JAUC|T|AUB| |BUC| |AUC|

Similarly, either C € B or B € C. Now we consider four cases. Case 1. A € B and C C B. Then
[ANB| |BNC| |ADC|_|A| |C| |AﬂC|_|A|+|C| |[ANC|

[AUB| |BUC| |AUC| |B| |B|] |AUC|  |B] [AUC]|
_lAUCI+IANC] _|ANC|_|AUC]  |ANC] |ANC
| B |JAUC|™ |B] | B |B|
JAUC|
= <
|B|

Case2. AC Band B C C. Then
ANBI IBOCI _ANCI |4l IBI JAI_IAl 1Bl 1Al _IBI_
|[AUB| |BUC| |AuC| Bl |C| [Cc|T|Cc] [cl ol |ClT
Case3. B C Aand C C B. Then
[ANB | [BOCI _[ANCI _ Bl ICI_[C|_|BI  ICl _IC| _|BI_
[AUB| |BUC| |AUC| |Al |Bl |AlT|Al 1Al Al AT
Case4. B C Aand B C C. Then
|[AnNB| |BNC| |ANC| |B|  |B] |ADC|<|AOC| |B| |AﬂC|_|B|<1
[AUB| |BUC| [AUC| |Al |C] |AUC|™ |A] |C] |A] |Cl™
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All four cases produce a contradiction to the statement that the expression had to be strictly bigger than 1. Hence,
that assumption is not valid, and so, the triangle inequality holds.

Thus, the Jaccard measure is a metric. [

Additional analysis of the properties of the distance metric of Theorem 1.

As a more general case we replace the trapezoidal fuzzy sets with L—R fuzzy numbers (c.f. [14]) to define linguistic
values. We will start with reminding the definition of L—R fuzzy numbers. L is a piecewise continuous non-increasing
mapping from [0, co) to [0,1] such that L(0) = 1, called reference function. Using two reference functions L and R a
fuzzy set is defined such that

m—u\ .
L( ) ifu<m
A(u) = *

R (u ;m) if u>m

where m is the mean value of A, and « and f§ are the right and left spreads. And the fuzzy number can be denoted as
A = (m, o, B)r r. Then the intersection (minimum) of two L—R fuzzy sets A = (mg4, o, f)r g and B = (mp, o, )L r
is defined as

(A.1)

0 if [mg —mp|<o+ f
max(ma, mp) —u
min(A, B) = o
R u—min(my, mp)
p
where p is the point of intersection of the left reference function of the set B and right reference function of the set A,
such that, i.e.,

>ifu§pand|mA—mB|>0€+ﬁ (A.2)

) ifu>pand|mg —mp|>a+p

I (max(mA, mpg) — P) _R <P — min(mg, mB)) (A3)
o B
Then the area of min(A,B) can be calculated as
0 if | mg —mp|<o+p
» max(ma, mp) —u
/ min(A, B) = { Jmaxinamp) oL ( o du (A.4)
- finimamth g (” - mm;mf" mB)) du if lms —mp| > o+ f

Also, the area of the union (maximum) is calculated as

/max(A,B):fA~|—fB—/min(A,B)
ma _ mA"l‘ﬁ _
=f L(mA ”) du—i—/ R(” mA) du
map—o o ma ﬁ
m _ mp+p _
+/ ’ L<mBa ”) du+/ ’ R(“ ﬁm3> du—/min(A,B) (A.5)

In this simple case o and f§ were the same for both sets. We obtain more complicated formulas, with more intersection
points, when they are different.

Hence the Jaccard similarity,
[ min(A, B)
[ max(A, B)

can be directly computed from (A.4) and (A.5).

sim(A, B) =
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For the specific case of trapezoids functions (Trap[m — a,m — b,m + c,m + d]), where m is the center of the trapezoid
and a, b, c and d are the distances to the change points left and right reference functions are defined as

0 ifu<m —a
Ly = 22" it —a<u<m — b (A.6)
a—>b
1 ifm—b<u<m
0 ifu=m+d
d_
R(u) = % ifm 4+ c<u<m +d (A7)
—C
1 ifm<u<m+c

In the case of two trapezoidal sets Trap[m — a,m — b,m + c¢,m + d]), the area of the intersection can be expressed as

0 if |mg —mp| >a+d
(min(m4, mp) — max(ma, mg) +d — a)> .
min(A, B) = 2atd—b—0o) ifb+c<|mg—mp|l<a+d (A.8)
b d
min(mg, mp) — max(my, mp) + % if |mg —mp| <b+c
And hence the Jaccard similarity is
0 if [ma —mp| >a+d
(min(ma, mp) — max(ma, mg) +d — a)?
Hatd—b=c) if b4c < |ma—mp| < a+d
—mp
(min(m4, mp) — max(ma, mp) +d — a)>
j = b d) —
sim(A, B) (a+b+c+d) atd—b—0 (A.9)
. a+b+c+d
min(ma, mp) — max(ma, mpg) + —
atbtc+d ifjma —mp| <b+c

7 —min(ma, mpg) + max(ma, mp)

In the case presented in Fig. 3 we deal only with L fuzzy sets, the R side is equal to 1. Hence A=Trap[m 4 —a,m4 —

b, Xmax X max] and similarly B= Trap[mp — a,mp — b, Xmax,Xmax], where X4, is the maximal value of the range.
Then the area of intersection is equal to

2X max— max(ma, mp)+a+b
2

/ min(A, B) =\ (x, . max(ma, mp)+a) Xmax— max(ma, mg)—a) . (A.10)
2a—b) if max(ma, mp)—b>Xax
—

if max(mA, mB)_bEXmax

And the area of union as

2X ar — Min(m.a, b
/max(A,B): may — minGm, mp) +a + (A.11)

2
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And Jaccard distance as

2Xmax— max(my, mp)+a+b

1 if s —-b<X
2X pax— min(m 4, mpg)+a-+b if max(m . mp)=b<Xmax
d(A, B) = (A.12)
I — (Xjnax— max(m 4, mp)+a)(Xax— max(ma, mp)—a)

(a—b)2Xpax—min(m, mpg)+a+b)

if max(ma, mp)—b > Xpax
Eq. (A.12) is used to obtain Fig. 3.
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