
  

 

Abstract—This paper proposes a system that allows the use 

of natural spatial language to control a robot performing a 

fetch task in an indoor environment. The system processes 

spatial referencing language and extracts a tree structure of 

language chunks. The spatial language system is then grounded 

to a robot navigation instruction in the form of a sequence of 

actions based on spatial references to furniture and room 

structure; the best navigation instruction is selected by scoring. 

In addition, the Reference-Direction-Target (RDT) model is 

proposed to represent indoor robot actions. To control the 

robot for the fetch task, a behavior model is designed based on 

the RDT model. An assistive robot has been designed and 

programmed based on this system. The proposed spatial 

language grounding model and robot behavior model are tested 

experimentally in three sets of experiments. Results show that 

the system enables a robot to follow spatial language commands 

in a physical indoor environment even if the referenced 

furniture items are re-positioned. 

I. INTRODUCTION 

The aging population is becoming a challenge that will 
continue to stress the care of seniors in the future. The old-
age dependency ratio in the United States was 0.20 in 2012 
and will increase to 0.35 at 2050 [1][2]. In other countries, 
the situation is more severe. For example, the old-age 
dependency ratio in Japan was 0.39 in 2012 and is forecast to 
be 0.74 in 2050, which means four Japanese workers per 
three retired older people (not considering children) [1][2]. A 
shortage of labor leads to shortages of healthcare staff. This 
creates a need for assistive devices such as robots [3]. 
Surveys have shown that older adults would consider 
assistive robots for household tasks such as fetching and 
searching for missed objects [4]. Furthermore, older adults 
also prefer natural language rather than other communication 
methods for robot interaction. In this paper, we propose 
natural spatial language interface methods for communicating 
with a robot performing the fetch task. Here, we focus on the 
language translation and navigation of the fetch task. The 
grasping component is not included [13]. 

Robot spatial language understanding has been explored 
previously. Matuszek [5] proposes an idea to convert natural 
language commands to logic descriptions. Tellex et al. 
developed a probabilistic graphical model, named 
generalized grounding graphics, to derive the best grounding 
solution from natural language commands. It is realized on a 
forklift robot as a sequence of robot actions [6][7]. Kollar et 

 
Zhiyu Huo is with University of Missouri, Columbia, MO 65211 USA 

(e-mail: zhdy7@mail.missouri.edu) 
Tatiana Alexenko is with University of Missouri, Columbia, MO 65211 

USA (e-mail: ta7cf@mail.missouri.edu) 

Marjorie Skubic is with University of Missouri, Columbia, MO 65211 
USA (e-mail: SkubicM@missouri.edu) 

al. developed an imitation learning policy to convert natural 
spatial language commands to sequential actions in an 
unknown environment. The method is tested on a simulation 
platform [8]. Fasola et al developed a model to generate a 
global path from using dynamic spatial relation references in 
a semantic map [9]. They assume the robot has a global 
knowledge of the working environment. Our work differs 
from the previous work in that different language structures 
are supported and we do not assume complete knowledge of 
the scene. Also, in this paper, we report test results with a real 
(non-simulated) robot in a physical environment. 

Details of our proposed system are included. The next 
section discusses spatial language grounding, i.e., how to 
ground natural language chunks to a robot navigation 
instruction. The Reference-Direction-Target (RDT) model   is 
proposed; a scoring procedure is used to find the best robot 
navigation instruction from the chunked natural language 
description. In addition, we introduce robot behavior models 
that support both dynamic and static spatial descriptions. 
Dynamic spatial descriptions use sequential actions such as 
“go forward” and “turn left” to navigate a robot to a target 
location. Static spatial descriptions use objects as references 
to describe a target location, i.e., “behind the couch” or “on 
the table next to the bed”. The third section shows the design 
of an assistive robot and its perceptual capabilities. The 
fourth section presents the experiment and results in a one-
bedroom and one-living room apartment environment. The 
experiment was run in the physical world, which means the 
performance is affected by both the spatial language 
grounding model, as well as the robot’s perception and 
navigation capabilities. Finally, we conclude with discussion 
and future work. 

II. SPATIAL LANGUAGE GROUNDING 

When using natural language for a spatial oriented task, 

people prefer to use relative spatial references rather than 

precise quantitative terms. For instance, to describe the 

position of a cellphone, people may say “the cellphone is in 

the living room on the right on the table behind the couch” 

rather than “the cellphone is 3.21 meter from the living room 

door at a 45 degree direction”. However, it is not as easy 

for the robot to understand such human-like descriptions. 

We refer to the procedure to translate a natural language 

description into a robot-understandable navigation 

instruction as grounding. In this paper, the natural language 

robot fetch command is first grounded (i.e., translated) to a 

robot navigation instruction and then executed by a pre-

defined robot behavior model. To ground natural language to 

robot navigation instructions, we first use the method 
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discussed in [11] to extract a tree structure in the form of language chunks. Then we use a scoring procedure to find 

the best robot command match for each chunk and connect 

them together to form a robot action sequence.  

Fig. 1 Reference types and their corresponding directions, defined from 

human subject experiment [13] 

A. Fetch Task Model 

In our fetch task, the robot is assumed to have prior 

knowledge of the room structure as this is fixed. However, 

we assume that the placement of furniture and daily objects 

inside the room is not known to the robot. In the fetch task, a 

human speaker stands in a hallway outside the target rooms 

and gives the robot a spatial description of the target object. 

The robot addressee then starts from the hallway, moves to 

the designated room, and then moves to the target object. 

The target objects are assumed to be on the surface of 

furniture items so there is no need to search inside furniture. 

The robot uses its local perception for navigation and object 

recognition in this task. The fetch task process is divided 

into three sub-tasks which represent three types of 

groundings which is a bridge between the natural spatial 

language description and the robot action:  

(1) Target Room: Determine the target room and enter the 

correct room, 

(2) Inside-room Navigation instruction: Move close to the 

target object by following the spatial description. 

(3) Target Object: Find the target object designated by the 

speaker.  

B. Reference-Direction-Target (RDT) Model 

The most difficult part of the task is to navigate the robot 

within the target room because the robot has no a priori 

information of furniture placement within the room, which 

may be changed by people who live there. The robot will use 

its own perception for navigation and object recognition. 

Guided by the human spatial language description, a robot 

can find a target object more efficiently than aimless 

searching. The Reference-Direction-Target (RDT) model is 

proposed which converts the inside-room spatial description 

into a series of actions with navigation instructions 

(grounding type 2, above).  

In the RDT model, Reference refers to objects in the 

room, furniture or even room structure, e.g. wall and door. It 

can also be a label that informs the robot about the behavior 

type it should perform. Dynamic commands are defined as a 

special kind of reference type which has no real reference 

object but rather uses a sequence of moves, e.g., turn left, go 

forward. Such reference types are different from static 

command behaviors that need perception to find an object 

used for reference in navigation. Several types of references 

are used in the fetch task, as described below. These 

references are collected based on human subject experiment 

[13]. 

MOVE – This reference represents dynamic spatial 

language commands in which there is not a real reference 

object. For example, “turn right” or “go forward”. There 

may be a target object for this reference type. 

ROOM – This reference uses fixed room information in 

navigation, e.g., “move halfway in” or “to the left part of the 

room”. The Direction component shows the possible part or 

direction of a room as destination. Because the room 

structure is not changed, by using a compass, odometry and 

prior knowledge of the room structure, the robot can move to 

the target area. In the experiment, the robot has a semantic 

room map with walls, and doors for the navigation. 

WALL – A wall is used as the reference to define target 

position, e.g., “to the back wall”. The robot will start 

searching once a target is in the RDT node. 

ROBOT – When using the robot itself as the reference, it 

does not directly appear in the description, but rather ego-

centric references are used, e.g., “behind you”.   

FURNITURE – A furniture item is used as a reference 

object. Based on previous work [10][11][12][13], the 

direction of the furniture reference follows human 

interpretation. For example, “in front of the chair” is defined 

using the intrinsic frame of the chair while the direction of 

the table and couch is defined by the viewing angle.  

Direction represents the position relationship between 

objects. It tells the robot where it should move to search for 

the target. The direction of each reference type is defined 

based on human speakers’ intentions. It may not be based on 

object ego-centric coordinates. For MOVE and ROBOT, the 

direction uses robot ego-centric coordinates. For 

FURNITURE, the direction sometimes uses viewer angle. 

For different types of navigation instructions, the reference 

frame for direction may be defined very differently. The 

directions used in the robot fetch commands include: front, 

left, right, back, central, side, and between. The Histogram 

of Forces (HoF) is used to represent the direction reference 

[19][20]. Fig. 1 shows the different reference types and their 

corresponding directions. 
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Fig. 2 Spatial Language chunking tree example

Target indicates the target furniture or target object in the 

navigation instruction. Sometimes there is not a target 

furniture word in the spatial language chunk. Often, the 

target furniture can be derived from content or human 

intention, usually, a table.There is a natural assumption that 

people usually put small objects on table-like furniture. An 

RDT node is built based on a target. It has one target and 

one or more reference–direction pairs because a speaker may 

use more than one reference to describe a target position. 

The FURTP chunk in Fig. 2 shows a multiple reference-pair 

example. If more than one reference-direction pair is given, 

the robot will skip remaining pairs once the target is found. 

C. Grounding from Chunking Tree to RDT model 

The RDT model can support either dynamic or static 

spatial descriptions with the same framework. The input is a 

chunking tree extracted by part-of-speech tagging [11]; see 

Fig. 2. The tree is parsed by a forward direction traversing 

process through the tree. The result is an action queue.  

To convert the chunking tree to a grounded navigation 

instruction (a sequence of robot actions), a scoring method is 

designed to find the maximum likelihood match for each 

chunk. It scores a chunk by two steps. First, it recognizes the 

grounding type. The grounding types include the target 

room, the inside-room navigation instruction, and the target 

object which represent the fetch sub-tasks. Then for the 

inside-room navigation case, the second step finds the 

reference, direction and target information (RDT node) of 

the chunk. Fig. 2 shows the procedure of a grounding 

example “The cellphone is in the living room on the right 

on the table to the right side behind the couch”. 

The scoring model is trained using spatial descriptions 

from a template corpus which summarizes the structure of 

1024 collected spatial language descriptions for a robot fetch 

task [14]. There are 101 unique chunks which cover all the 

words for six target object fetch description sets. First, we 

manually label the grounding information of each element in 

the training chunks. Chunk elements include chunk tag, 

chunk text, parent chunk tag and children chunk tags.  

Extracting the grounding type can be viewed as a 

classification problem. The final result is the grounding type 

with the highest score. For a sample of chunk s, the scoring 

equation for grounding type classification is: 

 

T = Maximumtp ( P( tp | tags ) S( txs , TXtp) ) 

 

T is the result of the grounding type classification. P(tp | 

tag ) S( tx , TXTp) is the score of the tp grounding type. tags is 

the chunk name of the sample chunk s, and the definition of 

each kind of chunk name can be found in [26]; txts is the text 

of the sample chunk s; TXtp is a corpus of template chunk 

text with chunk nametags and belongs to grounding type tp. 

S( TXs , TXtp) is the degree of membership for txs to TXTp by 

weighted Levenshtein distance (WLD).  

S( txs , TXtp) ) = 1 – Min( WLD(txs , txtp) ) 

The result of the first step is shown in Fig. 2.  

The following scoring equation is used in step 2. 

 

G = Maximumgd ( P( gd | tags ) S( txs , TXtp) … 

P( gd | prt_Tags ) P( gd | phn_Tags ) ) 

 

G is grounding result. This equation can be used on all of 

the groundings in the RDT node, including reference, 

direction and target furniture/object. gd is all the possible 

groundings in a grounding type T which is derived from step 

1. P( gd | Tags ) S( txs , TXtp) P( gd | prt_tags ) P( gd | 

chn_tags ) is the score value of the grounding type. prt_tags 

is the parent tag of the sample chunk and chn_tags is the 

child tag of the sample chunk. Fig.2 shows the second step 

result for the example command. 

A RDT node may be built using more than one chunk. In 

the example in Fig. 2, the FURTP chunk and its two nested 

child chunks build a single RDT node. The FURTP chunk is 

grounded to “target: table”. The IRMRP is grounded to 

“reference: robot + direction: right”. The FURRP is 

grounded to “reference: couch + direction: back”. The 

groundings of IRMRP chunk and FURRP chunk both 

describe the position of the target table in FURTP.  
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D. Robot Behavior Model 

The robot behavior model is built using the result of the 

spatial language grounding. The basic behavior of the robot 

is to compute the best point that fulfills the navigation 

instruction requirement and then let the robot move to it. The 

higher tier is a global sequence of three subtasks. The lower 

tier is for the navigation within the room by RDT nodes. 

Dynamic descriptions and static ones are distinguished by 

using different state machine strategies. Because dynamic 

descriptions use no furniture as references or targets, they do 

not need furniture searching and detection behaviors. By 

using odometry with prior knowledge about the house 

structure and basic obstacle avoidance by range sensing 

(e.g., sonar), it is possible for the robot to move to the target 

location. However, the static command strategy requires the 

robot to search and recognize the reference and target items 

and because of the limitation on perception, the robot 

sometimes should move to an intermediate position to get a 

better view to improve its perception confidence. The system 

will try reference-direction pairs sequentially until the target 

is detected when there is more than one reference for a 

target. This is an improvement than previous work because it 

reduced the ambiguous in target searching and it then 

brought higher success rate in experiment results. 

III.  ROBOT DESIGN 

A. Robot Design 

A mobile robot with the intelligence to navigate in an 

indoor environment and interact with a human has been 

designed and built to validate the performance of the method 

discussed in this paper. The robot has a differential drive 

chassis with an RGB-Depth camera.  

A Pioneer 3-DX (P3DX) robot was used as the robot 

chassis and driving component [22]. The robot has a 16 unit 

sonar array, eight in front and eight in the back. The tower 

frame is made of light aluminum and holds a Kinect camera 

and a laptop computer. The Kinect is popular because it can 

provide high quality synchronized color and depth data [23]. 

Usually its effective detection range is from 0.5 meter to 8 

meters which is adequate for indoor work. The controller of 

the robot is a laptop which runs the perception, robot 

behavior and human-robot interaction programs. The robot 

uses the Robot Operating System (ROS) [24][25], as a 

software platform. ROS provides libraries and tools to help 

software developers create robot applications. For robot 

navigation, we manually constructed map of room structure 

for robot and allowed it to use odometry for localization. 

However, the robot has no information about furniture items 

inside the room and it has to use visual perception to explore 

the furniture map. 

B. Visual Perception  

The spatial language corpus collected for the fetch task uses 

furniture items as reference objects [11][14]. Thus, the robot 

perception for the fetch task consists of two parts which are 

furniture recognition and furniture pose detection. Our 

previous work discusses details on the furniture recognition 

and furniture orientation methods [11]. 

1) Furniture Recognition 

Furniture recognition provides category classification of a 

furniture sample, whereas furniture pose detection identifies 

the position and the orientation of a furniture piece. We used 

features of shape, size, height and color for the furniture 

recognition challenge, using both RGB and depth images. 

The furniture recognition results are good but not perfect, 

which lends a realistic perspective to the experiments.  

2) Furniture Pose Detection 

Furniture pose detection includes both position and 

orientation. We use a grid map to represent the furniture 

positions and the robot because it retains the size and shape 

information which is used for the HoF-based spatial 

relations computation. The orientation is defined according 

to the different furniture categories. The orientation of table- 

shaped furniture is defined by the orientation of the short 

visible edge [11]. The orientation of chair-shaped furniture is 

defined by the orientation of the chair back [11]. 

IV. EXPERIMENT AND EVALUATION 

A. Spatial Language Grounding Experiment 

Fig. 3 Experimental environment with furniture and object placement 

Three experiments are used to evaluate the proposed 

system. The first experiment evaluates the translation 

(grounding) of the spatial language chunking tree to robot 

navigation instructions. We used the template corpus with 

149 spatial descriptions, which summarizes the structure of 

1024 collected spatial language fetch descriptions [14].Even 

our ultimately goal is to let the robot can interact with 

human by natural talking, all the commands are input in text 

form in this experiment so that the evaluation can be 

independent from speech recognition. The descriptions were 

categorized by major syntactic differences across instruction 

type (how/where) and a function of landmark type (none, 

goal, path). The how commands were mainly dynamic 

(sequential actions), whereas the where commands contained 

more static descriptions [14]. For different landmark 

conditions, none means no furniture reference was used. A 

goal landmark included a spatial reference description of a 

table where the target was located. A path landmark means 

there was furniture used as reference in the description along 

the path to the target [14]. The object names and positions 

are shown in Fig. 3. The ground truth for this experiment 
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was manually edited. We used 36 commands for training 

(six for each of 6 target objects) which were representative 

of both dynamic and static descriptions. All 149 descriptions 

were used for testing. The result is shown in TABLE I. 

TABLE I Spatial language grounding experiment results (in %) 

Types and 

Landmarks 

How vs. Where Goal vs. Path vs. None 
Total 

How Where Goal Path None 

Successful 

Rate 
89.4 81.0 89.5 72.54 100.0 87.9 

B. Robot Behavior Test 

The robot behavior model was evaluated in a two-room 

environment which has the same structure used for 

collecting the spatial descriptions. The room map and 

furniture and object placement are shown in Fig. 3. After the 

spatial language grounding procedure, there are 33 unique 

robot instruction combinations generated. To evaluate the 

robot behavior separately from the spatial language 

translation, this experiment used manually generated 

navigation instructions. In a fetch task, the robot is required 

to start from the hallway, enter the target room, then move 

along a path to the target furniture and take a picture of the 

target object. The robot state in each frame for each trial is 

recorded. An RGB image is taken with the robot’s Kinect at 

the end of each trial. The criterion of success is that the 

target object is recognizable on the camera picture at the end 

of the trial. We ran both simulation and real robot 

experiments with improved robot behavior model. The 

results are displayed by landmark type in TABLE II with a 

comparison to the previous simulation experiment [14]. 

TABLE II Robot behavior experiment results (in %) 

Experiment 

Type 
Goal Path None Total 

Simulation 

(Previous) 
89.5 40.0 98.0 84.6 

Simulation 89.5 86.0 98.0 90.1 

Real Robot 50.0 78.6 100.0 81.3 

C. Robot Behavior Model Robustness 

Fig. 4 Modified room placement for Experiment 3 

The robot behavior model was further evaluated for 

robustness by changing the furniture placement in the scene. 

In real life, the furniture position may be changed a little bit 

without notice by people. Such a change usually does not 

affect spatial relations between furniture objects. Therefore, 

a robot should have the ability to keep an accurate spatial 

understanding with a slight furniture position change. A 

modified furniture placement of the rooms, as shown in 

Fig.4, was used to test the robot behavior model again using 

the same navigation instructions. The results of the two 

experiments are compared in TABLE III. 

TABLE III Robot behavior model robustness experiment (in %) 

Experiment Type Goal Path None Total 

Original Placement 50.0 78.6 100.0 81.3 

Modified Placement 33.0 78.6 100.0 78.1 

Fig. 5 shows pictures of the scene and robot view for the 

fetch description: “Go into the room on the left. Move about 

halfway in and then turn right. Go forward to the table 

against the wall with the chairs and there is the mug.” 

Fig.6 shows the robot path of the fetch task. The path 

consists of a set of purple short lines. Each line represents a 

robot position in the path. The slope of each short line is the 

robot orientation.  

Fig. 5 The left image is a scene photo taken by an external camera. The 

right image show a view from robot Kinect camera. 

 

Fig. 6 The robot path for the fetch task, the X is the position of the target 

furniture. 

V. CONCLUSION 

The work in this paper enables the robot to follow spatial 

language descriptions for a fetch task. The methods 

proposed here can be expanded to a standard spatial 

language understanding model. In the paper, we discuss a 

method to ground chunked spatial descriptions to robot 

navigation instructions. We defined a Reference-Direction-

Target model which supports both dynamic and static spatial 

descriptions for indoor navigation instructions. With the 

RDT model and the HoF, which models spatial relations, the 

robot behavior can be built dynamically. A robot system was 

built to evaluate the system introduced in this paper. The 

spatial language grounding experiment shows good results 

for both dynamic and static descriptions, and includes 

 

 

1365



  

improvement over the work in [14]. The robot behavior 

model experiment evaluated the basic method in a real world 

environment. However, the perception of the real world 

robot yielded a lower performance overall compared to the 

simulation experiment. In our result, the “Path” and “None” 

landmark type result is better than simulation due to an 

improved grounding algorithm in RDT node building. An 

analysis of the robot trace shows that the robot sometimes 

incorrectly detects furniture which results in the wrong 

reference and direction selection. This decreased the 

performance in the “Goal” landmark case. The robot 

behavior model robustness experiment demonstrated the 

robot is robust on small furniture position changes that retain 

basic spatial relationships between furniture items.  

We will continue to improve the spatial language 

grounding system and the corresponding robot behavior 

model. Future plans include an experiment on a larger 

corpus collected from older adults rather than the templates. 

The grounding system will be improved for the end-user. 

Moreover, we will also improve the perception by building 

more precise furniture models to solve occlusion problems. 

We will continue simulated and real robot experiments to 

evaluate the robustness of the system in new room structures 

and with varying object placement. Our ultimate goal is to 

build reliable robot to assist elderly people in the home 

environment. 

ACKNOWLEDGEMENT 

The authors gratefully acknowledge Laura Carlson, Jared 

Miller and Xiaoou Li for their contributions to our early 

work and human spatial description data collection. 

REFERENCES 

[1] Old-age dependency ratios. The Economist. May 9th, 2009 

[2] Age dependency ratio, old (% of working-age population). World 

Bank Data. 

[3] J. Beer, M. Jenay, L. C. Tiffany, P. Akanksha, L. M. Tracy, C. K. 

Charles, & A. R. Wendy, “The domesticated robot: design guidelines 

for assisting older adults to age in place”, Human-Robot Interaction 
(HRI), 2012 7th ACM/IEEE International Conference on, pp. 335-

342, IEEE, 2012. 

[4] M. Scopelliti, V. Giuliani, and F. Fornara, “Robots in a Domestic 
Setting: A Psychological Approach,” Universal Access in the 

Information Society, 4, pp. 146-155, 2005. 

[5] C. Matuszek, E. Herbst, L. Zettlemoyer, & D. Fox, “Learning to 
parse natural language commands to a robot control system”, In 

Proc. of the 13th Int’l Symposium on Experimental Robotics (ISER), 

2012 

[6] S. Tellex, T. Kollar, S. Dickerson, M. Walter, A. Banerjee, S. Teller 

& N. Roy, “Understanding Natural Language Commands for 

Robotic Navigation and Mobile Manipulation,” Proc., Conf. on 
Artificial Intelligence (AAAI), 2011. 

[7] S. Tellex, P. Thaker, J. Joseph, and N. Roy, “Learning perceptually 

grounded word meanings from unaligned parallel data,” Machine 
Learning, pp. 1–17, 2013. 

[8] F. Duvallet, T. Kollar, A. Stentz, (2013, May), “Imitation learning 

for natural language direction following through unknown 

environments”, In Robotics and Automation (ICRA), pp. 1047-1053. 

2013 IEEE. 

[9] J. Fasola, & J. Mataric, “Using semantic fields to model dynamic 

spatial relations in a robot architecture for natural language 

instruction of service robots”, In Intelligent Robots and Systems 
(IROS), pp 143-150, 2013 IEEE/RSJ. 

[10] M. Skubic, Z. Huo, L. Carlson, X. Li, J. Miller, “Human-Driven 

Spatial Language for Human-Robot Interaction”, Workshops at the 
Twenty-Fifth AAAI Conference on Artificial Intelligence, 2011. 

[11] M. Skubic, T. Alexenko, Z. Huo, L. Carlson, J. Miller, “Investigating 

Spatial Language for Robot Fetch Commands”, Workshops at the 
Twenty-Sixth AAAI Conference on Artificial Intelligence. 2012. 

[12] M. Skubic, L. Carlson; X. Li, J. Miller, Z. Huo, “Spatial language 

experiments for a robot fetch task”, Human-Robot Interaction (HRI), 
2012 7th ACM/IEEE International Conference on. IEEE, 2012. 

[13] L. A. Carlson, M. Skubic, J. Miller, Z. Huo, and T. Alexenko. 

“Strategies for human-driven robot comprehension of spatial 

descriptions by older adults in a robot fetch task”, In Proc. 

[14] M. Skubic, Z. Huo, T. Alexenko, L. Carlson, and J. Miller, “Testing 

an assistive fetch robot with spatial language from older and younger 
adults.” In RO-MAN, 2013 IEEE, pp. 697-702. IEEE, 2013. 

[15] G. A. Radvansky, S. A. Krawietz, and K. T. Andrea, “Walking 

through doorways causes forgetting: Further explorations”, The 
Quarterly Journal of Experimental Psychology 64, no. 8 (2011), pp. 

1632-1645, 2011. 

[16] G. A. Radvansky and D. E. Copeland, “Walking through doorways 
causes forgetting: Situation models and experienced space”, Memory 

& cognition 34.5 (2006), pp. 1150-1156, 2006. 

[17] C. R. Arkin, “Behavior-based robotics”, MIT press, 1998. 

[18] L. A. Carlson, and P. L. Hill, “Formulating spatial descriptions 

across various dialogue contexts”, Spatial Language and Dialogue 
1.9 (2009), pp. 89-10, 2009. 

[19] M. Skubic, D. Perzanowski, S. Blisard, A. Schultz, W. Adams, 

Magda Bugajska, and D. Brock, “Spatial language for human-robot 
dialogs”, Systems, Man, and Cybernetics, Part C: Applications and 

Reviews, IEEE Transactions on 34.2 (2004), pp. 154-167, 2004. 

[20] P. Matsakis, and L. Wendling, “A new way to represent the relative 
position between areal objects”, Pattern Analysis and Machine 

Intelligence, IEEE Transactions on 21.7 (1999), pp. 634-643, 1999. 

[21] R. Siegwart, and I. R. Nourbakhsh. “Introduction to autonomous 
mobile robots”, MIT press, 2004. 

[22] P3DX Robot Introduction, Internet: http://www.mobilerobots.com-

/researchrobots/pioneerp3dx.aspx 

[23] Leyvand, Tommer, et al. "Kinect identity: Technology and 

experience."Computer 44.4 (2011): 94-96. 

[24] Quigley, Morgan, et al. "ROS: an open-source Robot Operating 
System." ICRA workshop on open source software. Vol. 3. No. 3.2. 

2009. 

[25] ROS Wiki, Internet: http://wiki.ros.org 

[26]  Z. Huo. “Robot methods for human-robot spatial language 

interaction”, Master Thesis, University of Missouri--Columbia, 

2013. 

1366


