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Abstract

This contribution presents a corpus of spatial descriptions and describes the development of a

human-driven spatial language robot system for their comprehension. The domain of application is

an eldercare setting in which an assistive robot is asked to “fetch” an object for an elderly resident

based on a natural language spatial description given by the resident. In Part One, we describe a

corpus of naturally occurring descriptions elicited from a group of older adults within a virtual 3D

home that simulates the eldercare setting. We contrast descriptions elicited when participants

offered descriptions to a human versus robot avatar, and under instructions to tell the addressee

how to find the target versus where the target is. We summarize the key features of the spatial

descriptions, including their dynamic versus static nature and the perspective adopted by the

speaker. In Part Two, we discuss critical cognitive and perceptual processing capabilities neces-

sary for the robot to establish a common ground with the human user and perform the “fetch”

task. Based on the collected corpus, we focus here on resolving the perspective ambiguity and rec-

ognizing furniture items used as landmarks in the descriptions. Taken together, the work presented

here offers the key building blocks of a robust system that takes as input natural spatial language

descriptions and produces commands that drive the robot to successfully fetch objects within our

eldercare scenario.
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1. Introduction

Human comprehension of spatial language is a complex activity. Consider (1):

(1) “Your eyeglasses are behind the radio on the table in the bedroom.”

First, the spatial term “behind” is qualitative, circumscribing a vague region of space,

rather than a precise metric location (Landau & Jackendoff, 1993; Talmy, 1983). Second,

this region depends upon the interpretation of the spatial term behind, which could be

based on the perspective of the speaker or addressee, the orientation of the room, or the

sides of the objects (radio, table) (Levelt, 1996; Levinson, 1996). Third, the description is

typically comprehended within a conversational context that includes the speaker’s assump-

tions about the addressee’s capabilities and knowledge (Clark, Schreuder, & Buttrick,

1983) and the establishment of a common ground (Clark, 1996). Despite these complexi-

ties, human interpretation of such instructions normally proceeds naturally and fluently.

In sharp contrast, the comprehension of spatial descriptions is particularly problematic

for robots. First, robots “think” and move in terms of quantitative rather than qualitative

relations, relying on mathematical expressions and numbers. Second, given that spatial

terms are ambiguous, strategies are required for determining perspective, and allowing for

reinterpretation when necessary. Third, assumptions about common ground and the capabil-

ities of the addressee depend upon whether the addressee is a human or robot (Tenbrink, Fi-

scher, & Moratz, 2002). Previous work has proposed a qualitative spatial representation for

robot navigation (Gribble, Browning, Hewett, Remolina, & Kuipers, 1998; Kuipers, 2000).

Others have proposed the use of directional commands for mobile robots, for example, turn
left, go forward, or go past <the landmark> (Muller et al., 2000; Tellex & Roy, 2006; Levit

& Roy, 2007; see Klippel & Montello, 2007 for more on the interpretation of directions).

However, with such work confined to a 2D ground plane, further development is needed to

achieve human-like comprehension of natural 3D spatial descriptions. While it is possible

to train a speaker to restrict robot directives to a set of constrained commands (i.e., make

the user adapt to the robot), our intent instead is to explore how the robot can adapt to the

human user, with all of the ambiguities and complexities inherent in natural language.

We addressed these complexities by collecting a corpus of spatial descriptions elicited

within a 3D virtual setting in the context of a fetch task. In Part One, we describe the

corpus, looking systematically at how various measures, including word count, the inclu-

sion of different categories of words, perspective, and the dynamic or static nature of the

description, vary as a function of the addressee and the instruction to speakers. We con-

clude Part One by indicating next steps for the corpus, which include assessing the effec-

tiveness of the spatial descriptions (Carlson, Skubic, Miller, Huo, & Alexenko, 2013),

and comparing performance of robot simulations with human performance in the fetch

task by contrasting path metrics, including length and number of pauses (Skubic, Huo,

Alexenko, Carlson, & Miller, 2013). In Part Two, we discuss how the corpus in Part One

provides the basis for the development of robot strategies designed to comprehend these

descriptions. We then provide an overview of the system that we are building that con-
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tains the components of natural language processing (NLP), navigation instruction repre-

sentation, identification of perspective, and robot behavior including perceptual recogni-

tion of objects in the environment (Skubic et al., 2013). Then for illustration, we present

an in-depth description of two of these processes that are essential for establishing com-

mon ground between speaker and addressee: identification of perspective, and recognition

of furniture items used as landmarks.

2. Part 1. The spatial description corpus

Our corpus of spatial descriptions was collected within an eldercare scenario in which a

participant navigates through a virtual 3D house environment to find a target, and then pro-

vides spatial descriptions that specify the target’s location to an avatar in the context of a fetch

task. The house consisted of a long hallway with a living room on the left and a bedroom on

the right that was modeled after lab space at the University of Missouri. Fig. 1, Panel A shows

a survey view of the space; Panel B shows portions of the virtual rooms; and Panel C shows

portions of the rooms within the physical lab space. This correspondence between virtual and

physical space enables future comparisons across types of environment. The selection of this

scenario is motivated by the fact that older adults identify fetch tasks in which the robot

retrieves a desired object as one of the top five tasks for assistive devices (Beer et al., 2012).

Moreover, older adults report a strong preference for being able to speak naturally to assistive

devices, rather than other types of interfaces (Scopelliti, Giuliani, & Fornara, 2005).

We focused on three critical aspects of the scenario. First, research has shown an

increased reliance on landmarks during wayfinding by older adults (Davis, Therrien, &

West, 2009). In our virtual house, there were several types of landmarks that could be used

to specify the location of the targets, which were positioned on tables in the virtual scene:

house units such as walls or rooms; furniture units such as a couch, bed, or table; and

object units that were co-located on the tables, such as a lamp or wallet on the table next

to the target. Our interest was in identifying which type of landmarks older adults would

typically include. Another interest was whether descriptions relied on adopting an intrinsic

reference frame for a furniture object. For example, consider the couch shown in Fig. 1.

The phrase “the table in front of the couch” (see the full description in Table 1) is poten-

tially ambiguous; it might refer to the circular table, with front defined by the viewing per-

spective when entering the living room, or the rectangular table, with front defined as the

front side of the couch. The robot strategies must recognize the furniture objects and also

note their orientations, which will then be used during ambiguity resolution.

Second, within the virtual environment, participants offered spatial descriptions to either

a human avatar named Brian (see Fig. 2, Panel A) or a robot avatar modeled after our real-

life robot (see Fig. 2, Panel B). The participant and the addressee always faced each other,

so that their perspectives were offset 180 degrees. This enabled us to code the spatial

descriptions as being consistent with the participant’s perspective or the addressee’s per-

spective, based on the use of the terms left and right to guide the addressee to the target.

When neither term was used (e.g., “The wallet is on the table in the bedroom”), the per-
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Fig. 1. Panel A shows a survey perspective of the house environment that contains a living room on the left,

a hallway in the middle, and a bedroom on the right. A trial within the virtual environment started at the

location in the hallway indicated by “start” with the perspective indicated by the arrow, facing the robot or

human avatar addressee. Panel B shows part of the living room and bedroom at the eye-level height adopted

in the experiment. Panel C shows the corresponding rooms in Skubic’s lab at Missouri. The similarity across

the virtual and physical spaces will enable us to test in the future for any differences based on virtual versus

actual environments and virtual versus actual addressees (robot and human).
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spective was coded as indeterminate. When speakers and addressees are misaligned, speak-

ers generally prefer the addressee’s perspective (Mainwaring, Tversky, Ohgishi, & Schiano,

2003; Schober, 1993), with this preference also present for robot addressees (Tenbrink

et al., 2002). However, DiSalvo, Gemperle, Forlizzi, and Kiesler (2002) showed that

humans define their interactions with avatars based on the degree of anthropomorphism,

which suggests potential variation in the preference for an addressee perspective across the

two types of avatars. Moreover, Scopelliti et al. (2005) found that older adults showed neg-

ative emotional responses to robots. Such attitudes may be reflected in a preference to use a

speaker’s perspective when speaking to a robot, given that this minimizes the speaker’s cog-

nitive load with an increased burden for the addressee (Schober, 1993).

Third, we manipulated the instructions, using these two prompts:

Where prompt: Tell (Brian/the robot) where the <target> is

How prompt: Tell (Brian/the robot) how to find the <target>

Plumert, Carswell, DeVet, and Ihrig, (1995) found that where prompts elicited descrip-

tions with hierarchical sequences ordered from small to big units (e.g., “behind the lamp,
on the table, in the bedroom”), whereas how prompts elicited sequences ordered from big

to small (e.g., “in the bedroom, on the table, behind the lamp”). Because our environment

was not as hierarchically structured as Plumert et al.’s, we characterized descriptions

instead along a dynamic versus static dimension. Dynamic descriptions actively moved

the listener through the environment to the destination, and resembled step-by-step direc-

tions (e.g., “Go forward, turn right, look to the left. . .”). In contrast, static descriptions

described the location of the object in a stable, stationary manner independent of the

Table 1

Sample descriptions for the target “letter” from the corpus, presented as a function of addressee and instruc-

tion. Each description is provided by a different participant, and each condition shows two descriptions

Brian Robot

How Brian go to your right the

room on your right and as

you enter take another

right turn and on the

table in front of you

you’ll see a letter

Oh, turn right, and then

right again, and then it

will be on the table

Turn left into that room and the

letter is on the table near the door

Okay come four steps forward.

Turn my left into the room and

then take a sharp right toward

the table in the corner and the

letter is right in right at the

edge of the table. . .the forward

edge

Where The letter is in the living

room to your right on that table

Brian if you go in to the

room on the left and make

an immediate right to the

table in front of the couch

you will find the letter

It is in the room on the right

The letter is in the living room

on the six-sided table
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addressee (e.g., “The cell phone is on the table by the bed in the bedroom”). These types

of descriptions differ with respect to phrase structure, parts of speech, and types of spatial

relations and word choice. The natural language processing strategies for the robot must

be flexible enough to accommodate both types, but it would be helpful to understand the

contexts in which each type is preferred. For example, in the natural language processing

component of our system, separate parsing procedures are being developed for dynamic

and static descriptions. Therefore, knowing whether older adults prefer to use static

descriptions with the robot as opposed to dynamic descriptions enables the system to

make an initial selection about which parsing procedure to try first. We are also investi-

gating consistent features in the language structure that can be used to classify the

description as static versus dynamic, to further aid in the parsing.

2.1. Method

2.1.1. Subjects
Sixty-four older adults participated, with a mean age of 76 (range 64–96), recruited

from local senior centers in South Bend, IN, and Columbia, MO, and compensated with

Fig. 2. Addressees in the fetch task: Brian and the robot. All participants were told that they were facing the

robot to ensure that they knew the robot’s front side.
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$10 for their participation. All gave informed consent and were treated in accordance

with APA ethical guidelines. The data were collected at the local senior centers and in

the lab at Notre Dame for those who preferred to travel on-site. Participants were pre-

screened for cognitive impairment with the Mini-Cog Assessment Instrument for Demen-

tia (Borson et al., 2000). Two older adults failed this screening and were replaced in the

final sample. Participants also completed three assessments at the end of the experiment

to characterize their general health and cognitive functioning. First, they filled out a gen-

eral health measure that included questions such as date of birth, years of education, and

basic health questions about audition and vision and level of satisfaction with their health

and physical condition. All participants reported good basic health and overall satisfaction

scores (M = 3.88, range of 2–4 on a scale from 1 (dissatisfied) to 4 (satisfied). Second,

they completed the Mill Hill vocabulary test (Raven, Court, & Raven, 1977), which pro-

vides an indicator of general verbal intelligence. Mean scores were 20.7 (range of 9–31)
out of a possible score of 33, indicating unimpaired performance. Third, participants com-

pleted the Digit-Symbol test (Wechsler, 1997), which measures visual-motor speed and

complexity and motor coordination. Mean scores were 61.2 (range of 24–93) out of a

possible score of 93, indicating unimpaired performance.

2.1.2. Stimuli and Design
A virtual house environment (see Fig. 1) was created using 3dsMax Design 2010©

(AutoDesk WorldWide Headquarters: Autodesk, Inc., San Rafael, CA) and Google Sket-

chUp© (Trimble Navigation Limited Sunnyvale, CA) and rendered using Half-Life 2

(Valve, Bellevue, WA) gaming software. Each room contained four tables, two chairs,

and a couch or bed. Within each room, two potential reference objects and a target were

placed on top of each table; objects are listed in the Appendix. Eight versions of the

house were created, each containing a single target. A different house version was used

for each trial to prevent a preview of targets for future trials. The design was a 2 (addres-

see: Brian vs. robot avatar) X 2 (instruction: how or where) between subjects factorial

design with 16 participants assigned to each of the four conditions.

2.1.3. Procedure
The session began with a brief video tour (42 s) of the house that showed the structure

of the rooms. After this, participants explored the virtual environment by telling the

experimenter when and where to go. The experimenter controlled the navigation, because

pilot testing showed that older adults felt uncomfortable and unfamiliar with this technol-

ogy, consistent with Ezer (2008). On average it took about 3–5 commands for partici-

pants to feel comfortable with this procedure. Participants with the robot as addressee

were also shown labeled pictures of the front and back of the robot so that they under-

stood they were facing the front of the robot at the start of each trial.

Each participant completed eight experimental trials. On each trial, participants were

shown a picture of the to-be-found target on a gray background. The experimenter named

the target to ensure full identification. Participants started in the hall and told the experi-

menter how to navigate to find the target. Participants were allowed to search as long as
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necessary to discover the target; the procedure was not timed. No trials were excluded

due to an inability to locate the target. Participants were then returned to the starting

location, received their assigned “where” or “how” prompt, and described the location of

the target to the addressee; these descriptions were recorded. There were no constraints

on the content or format of the descriptions. The order of the trials was randomized

across all participants. Finally, after completing all trials, participants drew a map of the

house that was coded to verify that participants had an accurate representation of the

environment in terms of the layout of the rooms.

2.2. Results and discussion

2.2.1. Details of the corpus
The corpus consisted of transcriptions of 512 spatial descriptions (64 participants X 8

trials). Table 1 provides sample descriptions broken down by addressee and instruction.

On average, how descriptions contained more words (M = 27.0 words/description) than

where descriptions (M = 19.4), F(1, 60) = 10.7, gp
2 = .151, p < .05. In addition, descrip-

tions given to Brian (M = 25.5 words/description) contained more words than descrip-

tions given to the robot (M = 20.9), F(1, 60) = 4.0, gp
2 = .062, p = .05. There was no

interaction, F < 1.

We classified the 11,854 words used in the descriptions into major categories, includ-

ing spatial terms (count = 2689), landmark types (count = 1206: house units = 624, fur-

niture units = 537, and object units = 45), and hedges (count = 80) that modified the

directional heading, for example, “immediately to the right.” We present histograms of

the words occurring within these categories in Fig. 3. Table 2 provides counts for each

category as a function of addressee and instruction.

2.2.1.1. Spatial terms: The predominant spatial terms were on, to, left, right, in, and into.
There were more spatial terms in how descriptions (M = 4.1) than in where descriptions

(M = 2.3), F(1, 60) = 18.5, gp
2 = .236, p < .05, consistent with how descriptions specify-

ing a path to a location rather than the location per se. There was no difference in the

spatial terms given to Brian (M = 3.5) or the robot (M = 2.9), (F(1,60) = 2.48,

gp
2 = .040, p = .12), and no interaction (F < 1).

2.2.1.2. Landmark types: Both furniture and house units were popular, consistent with Cas-

senti, Kelley, Avery, and Yagoda (2011), who found improved performance for robot direc-

tives that included both spatial terms and larger objects. Strikingly, object units were rarely

included. Where descriptions contained on average more house units (M = 1.4) than how
descriptions (M = 1.1), F(1,60) = 5.0, gp

2 = .077, consistent with where descriptions speci-
fying a location rather than a path. There were no differences as a function of addressee or

instruction for the number of object units or furniture units (all Fs < 1.4, ps > .24).

2.2.1.3. Hedges: Hedges were not used very frequently (count of 80 out of 512 utter-

ances); however, the two most popular hedges (e.g., “right as you enter,” “immediately
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(A) (B)

(C)

Fig. 3. Histograms for different categories of terms used in the spatial descriptions. Panel A shows spatial

terms; Panel B shows object units, furniture units, and house units; Panel C shows

hedges.

Table 2

Mean word counts per description for spatial terms, house units, furniture units, object units and hedges as a

function of addressee and instruction

Robot Brian

How Where How Where

Spatial terms 3.65 (.36) 2.18 (.39) 4.47 (.36) 2.59 (.44)

House units 1.21 (.16) 1.18 (.19) .88 (.11) 1.59 (.12)

Furniture 1.04 (.09) .97 (.09) 1.05 (.14) 1.13 (.07)

Object units .04 (.02) .09 (.04) .13 (.05) .09 (.03)

Hedges .23 (.08) .02 (.01) .20 (.06) .17 (.04)
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on your left”) tended to occur at the point of discovering the target, with significantly

more hedges for how instructions (M = .22) than for where instructions (M = .09), F
(1,60) = 5.4, gp

2 = .083. Interestingly, there was a marginal interaction between addres-

see and instruction, F(1,60) = 3.05, gp
2 = .048, p = .09. With how descriptions that

emphasized a path, speakers used hedges at the same rate for both Brian (.20) and the

robot (.23). However, with where descriptions, participants continued to use hedges at

that same rate with Brian (.17) but stopped using hedges for the robot (.02). This is an

indication that older adults may alter their descriptions when speaking to the robot, due

perhaps either to different perceived capabilities or different degrees of willingness to

accommodate to the robot. This is an issue that we are exploring in further studies.

2.2.2. Dynamic versus static
Two raters coded the descriptions as dynamic or static, with an interrater reliability of

99%. The mean percentage of dynamic descriptions broken down by addressee and

instruction is shown in Fig. 4. A 2 (instruction) X 2 (addressee) between subjects ANOVA

revealed a significant effect of instruction, F(1, 60) = 48.5, np
2 = .447. For how descrip-

tions, the overwhelming preference was to use a dynamic description, almost all of the

time (M = 95.3%); however, for where descriptions, there was more variation, with fewer

dynamic descriptions (M = 35.8%) than static descriptions (64.2%). Moreover, within the

where instructions, the number of dynamic descriptions was below chance for the robot

(M = 28.6; t(15) = 1.98, p < .066) but not for Brian (M = 43.1%; t < 1). This means that

older adults were not as willing to offer step-by-step instructions for the robot when the

task instructions did not require it. This is consistent with the lack of accommodation in

the use of hedges observed for robots in this condition.

2.2.3. Perspective
Of the 512 descriptions in the corpus, 231 were coded as adopting the addressee per-

spective, 165 as the speaker perspective, and 116 coded as indeterminate. Fig. 5 shows

the breakdown of each perspective as a function of addressee and instruction. The addres-

see perspective used more frequently for Brian (M = 63.7%) than for the robot

Fig. 4. Percentage of dynamic descriptions as a function of addressee and instruction. Error bars correspond

to the standard error of the mean.
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(M = 27.0%), F(1,60) = 11.5, np
2 = .161, p < .05; indeed, for the robot, the speaker’s

perspective was preferred (M = 46.0%).

2.3. Summary of the behavioral results

Generally, descriptions contained a combination of spatial terms and house and furni-

ture landmarks but very few object landmarks. Moreover, there were key differences as a

function of addressee and instruction. When talking to the robot, participants preferred to

use fewer words and to adopt a speaker’s perspective, whereas when talking to Brian,

participants used more words and preferred an addressee perspective. We are planning on

examining the extent to which these differences as a function of addressee are based on

differences in appearance between Brian and the robot or differences in the inferences

that speakers make about the capabilities of the addressee.

When describing how to find the target, participants consistently used dynamic descrip-

tions that contained more spatial terms and fewer house units and hedges, regardless of

addressee. However, when describing where the target was, participants used fewer spa-

tial terms and more house units. They were also more likely to use dynamic descriptions

for Brian but static descriptions for the robot and to avoid the use of hedges.

2.4. Next steps for the corpus

It is beyond the scope of this article but worth noting that we have also begun assess-

ing the effectiveness of the spatial descriptions that are in our corpus, examining whether

the descriptions are accurate, as reflected in whether a human could find the appropriate

target given the spatial description. One interesting finding is that in general the where
descriptions are associated with more successful performance than the how descriptions

(Carlson et al., 2013). We are also contrasting the performance of the human and the

robot in terms of the efficiencies of their paths to the target, using path metrics such as

path length and number of pauses (Skubic et al., 2013).

Fig. 5. Percentages of addressee, self and indeterminate perspectives, broken down by addressee type and

instruction.
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3. Part 2. Establishing common ground with the addressee

The corpus was collected with the objective of capturing typical language used by

seniors for the “fetch” task. In particular, the motivation was to see what type of lan-

guage was used when giving directives to either a robot or another person with the intent

of exploring how well these natural directives can be translated into robot commands. As

such, the corpus is a central component of a system that we are building for the robot

that includes the components of natural language processing (NLP), navigation instruction

representation, and robot behavior (for an overview of the system, see Skubic et al.,

2013). With the development of this system, the robot will be able to receive natural spa-

tial descriptions and navigate to find the target in a fetch task. Indeed, we have begun to

conduct simulations with the robot using templates derived from the natural spatial

descriptions from the corpus, in order to assess how well the robot finds the target, as

compared to humans who receive the same templates (Skubic et al., 2013).

For the purposes of the current article, we focus on two critical processes within our

system: (a) reasoning about the perspective used in the directives, and (b) recognition of

furniture items used as spatial references. These processes emerge directly from our

analysis of the corpus in Part One. With respect to perspective, there were systematic dif-

ferences in the perspective adopted by speakers as a function of the addressee. Of rele-

vance here is the finding that while both perspectives were used when speakers talked to

robots, they preferred their own perspective (as opposed to the addressee perspective that

was preferred for talking to Brian). With respect to landmarks, there was a strong prefer-

ence for using furniture objects as landmarks rather than the smaller objects on the tables

next to the targets. Therefore, the robot will need to identify and differentiate the differ-

ent furniture items, including the many different tables (four per room). Addressing these

challenges to facilitate the interpretation of natural language directives will advance our

goal of creating a human–robot interface that establishes a common ground with the user.

Our objective is to provide a robot that adapts to the user needs by giving the robot

advanced perceptual and reasoning capabilities modeled after those of a human.

Our physical robot is built on a Pioneer 3DX base and uses the Robot Operating Sys-

tem (ROS) (Quigley et al., 2009). The robot’s sensors consist of a laser range-finder for

obstacle avoidance; the Microsoft Kinect provides perceptual capabilities for recognizing

furniture and other items in the scene. The Kinect is positioned at a height of 1 m; both

color (RGB) and depth images are used. The sensing capabilities of the Kinect constrain

the useable distance and viewing cone for furniture recognition.

The robot system includes the linguistic processes for part-of-speech (POS) tagging,

chunking, and meaning extraction; cognitive processes for reasoning about one’s position

in the environment, correctly interpreting perspective, and using POS tags to classify

words into meaningful categories (e.g., house units and furniture units); and perceptual
processes for recognizing objects and successfully navigating within the environment.

Here, we focus on the development of the cognitive process of determining perspective

and the perceptual process of recognizing furniture objects. The natural language process-

ing component is further discussed in Skubic et al. (2013).
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3.1. Determining perspective

As shown in Fig. 5, the corpus contains descriptions from an addressee perspective,

from a speaker perspective, and indeterminate descriptions for which perspective could

not be derived. Although the corpus revealed some preferences for a given perspective in

certain contexts, these are not completely predictable. Therefore, the robot strategies will

need to reliably determine perspective for each description. Other approaches to this

problem include Trafton et al. (2005) cognitive architecture that helps the robot reason

about perspective; Berlin, Gray, Thomaz, and Breazeal (2006) use of the teacher’s per-

spective in robot learning by demonstration; and Matuszek, Fox, and Koscher’s (2010)

reliance on environmental structures to reason about perspective. Our approach makes

use of prior knowledge of the environment, landmarks, and context as a means of estab-

lishing common ground with the elderly user.

Perspective can be derived within our environment by the use of left and right as

directional commands given that speakers and addressees were offset by 180 degrees and

given that the starting position for each trial was the middle hallway in the house (see

Fig. 1, Panel A). Our approach requires that two conditions be met. First, the robot

requires an approximate map of the environment that minimally includes the entrances to

the rooms and their names, for example, living room, bedroom. Ideally, the map should

also include a list of possible furniture items in each room. The map does not have to

include all of the furniture, although including some of the larger, fixed items (e.g., bed)

will improve the efficiency of the fetch. Providing the robot with such a map serves a

dual purpose of determining the perspective taken by the speaker as well as speeding up

and simplifying furniture recognition (see below). Second, the robot needs to know its

own location and orientation on the map, at least in relation to the entrances to the

rooms.

For determining perspective, during parsing there is a search within the description for

the appearance of a room name and the spatial terms left or right, with the requirement

that they be in the same noun phrase. When found, the robot compares this information

with the map and its starting position and orientation. For example, if the speaker told

the robot to “turn right into the bedroom” and the combination of the map and the

robot’s position and orientation indicate that the bedroom is on the robot’s left, the robot

can deduce that the speaker adopted his or her own perspective, and that the robot should

indeed turn left to go into the bedroom. The observed differences in the corpus for prefer-

ences to use the speaker perspective with the robot, but the addressee perspective with

Brian can be incorporated into the strategies as probabilities that factor into the initial

commitment that the robot makes in determining perspective. Additionally, the corpus

can be used to identify phrases that indicate perspective, and these phrases can be used

as features of a particular perspective. For example, if the speaker tells the addressee to

“turn around,” this is an indication that the speaker wants to align the perspectives so that

his or her own perspective can be used.

Obviously, this room-name approach will fail for descriptions that do not contain the

name of the room, such as “go into the room on the right.” In this case, the furniture
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items that are included in the description are compared against a list of items typically

included or known to be included in each room as a way of guessing which room was

intended. This models human reasoning about room purpose. However, this, too, can fail

if the furniture items in the description do not clearly indicate the room, or if multiple

rooms contain the same furniture items (e.g., table). In this case, it is important that the

robot recognize that ambiguity still exists. At this point, the robot will ask for clarifica-

tion. Since such discourse is time consuming, however, we use it as a last resort if the

reasoning steps fail.

3.2. Furniture recognition

Given our intent to study the robot fetch task in the physical world, it is important to

confront the perceptual challenges placed on the robot for accomplishing the task. This is

an important step toward language-based human robot interaction (HRI), as grounding of

language is related to human perception (Roy, 2005). We focus here on the recognition

of the furniture units, given the high frequency of occurrence of this type of landmark

within the corpus across all addressees and all instructions. Furniture could be included

in a map; however, some items may be moved, so we do not want to rely on precise,

mapped locations. Instead, we need a strategy that recognizes not only the furniture item

but also its orientation, given that some descriptions may assume an intrinsic front or

back for the furniture (e.g., in front of the couch).
In related work, others have proposed language-based HRI approaches that require

landmark recognition but have not included recognition strategies (e.g., Chen & Mooney,

2011). Moreover, there is previous work on object recognition using the Kinect system

that we adopt here. Lai, Bo, Ren, and Fox (2011) use color and depth images to recog-

nize small objects. Janoch et al. (2011) use the histogram of oriented gradients and size

to recognize a variety of objects, including furniture. However, much of this work focuses

on recognition only and is not necessarily concerned with execution speed, which is

important for timely human–robot interaction. Moreover, the previous work does not gen-

erate a model of furniture with spatial information such as position and orientation, and

relies on a comprehensive training dataset such that only those specific objects are recog-

nized. In contrast, our approach considers execution speed; determines the orientation of

the furniture item along with its recognition, using both depth and color images from the

Kinect; and allows type classification for objects outside the training set.

3.2.1. Furniture recognition methods
Large objects in the scene are first segmented based on the point cloud generated from

the depth image by clustering; the corresponding color information of the points is then

extracted from the background. Many furniture items found in the home have a primary

horizontal plane, for example, chairs, beds, couches, and tables. To eliminate the effect

from the clutter on top of furniture samples, we use the main (horizontal) plane to

help to build the furniture model. The main plane is identified using the RANSAC algo-

rithm (Golovinskiy, Kim, & Funkhouser, 2009). Tests indicate it is possible to find the
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horizontal plane even when surface clutter occupies half of the area. Seven features are

used in the furniture classifier:

Furniture size (area of the main plane)

Main plane height (average height of all points in the plane)

Main plane texture (local binary pattern operator (Ojala, Pietik€ainen, & Harwood,

1996))

Furniture type (chair-like or table-like, computed based on shape)

Main plane red color proportion, normalized

Main plane green color proportion, normalized

Main plane blue color proportion, normalized

All features are normalized and have an equal weighting. The furniture classification

process has two steps. In Step 1, the first four features are used as inputs into a system of

fuzzy rules to classify the general type of furniture item, based on the class with the high-

est membership value. In Step 2, furniture items are further separated by color, with the

last three features used with a support vector machine to make the final decision of

instance. Thus, a furniture sample that is not contained in the training dataset can still

have a type classification based on general shape, which assists the human–robot interac-
tion process.

The confidence of the recognition result is computed from two components: intrinsic

confidence, which is determined by the scores of type classification and instance recogni-

tion, and extrinsic confidence, which depends on the robot’s position with respect to the

object. There are three factors in extrinsic confidence: distance, viewing direction, and

viewing completeness, that is, based on whether the entire item is in view. The confi-

dence of the recognition result is the mean of these two kinds of confidence. For large

furniture items, such as the couch and the bed, the robot is seldom able to view the entire

item due to the viewing cone of the Kinect. Therefore, the viewing completeness mea-

surement for these items is relaxed to prevent them from being ignored by the robot due

to a low recognition confidence.

Orientation of the furniture item is determined differently for symmetric versus asym-

metric objects. For symmetric, table-like objects with no intrinsic front, the closest visible

edge is assigned as the front. For rectangular tables, the closest long edge is assigned as

the front, based on a previous human subject experiment (Blisard & Skubic, 2005). For

chair-like objects, orientation is based on the direction of the chair back relative to the

main plane, as shown in Fig. 6.

3.2.2. Experiments and results
To test this approach, nine furniture items were selected to represent the items from

the virtual house (see Fig. 7). Color and depth images were taken around each object in

eight directions and eight distances from 1 to 3 m. Of these 64 images, 48 were used for

training and 16 for testing. As a further test, eight images at 1.5 m were collected for a

subset of six items on cluttered tables to better represent an unstructured home environ-

ment. The furniture recognition process runs in about 9 ms on an Intel core i7 CPU at

1.6 GHz, making the process feasible for real time human–robot interaction. The results
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Fig. 6. Chair-shaped objects have an intrinsic front, as shown by the arrow, independent of the robot’s rela-

tive position. For table-shaped objects, the front is determined by the robot’s relative position and viewing

perspective. The robot reference axes show the viewing angles used for the test results in Table 4.

Fig. 7. The nine furniture items tested: (1) round table, (2) blue chair, (3) hexagon table, (4) wood chair, (5)

coffee table, (6) dinner table, (7) desk, (8) couch, and (9) bed.
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are shown in Table 3 for the test images after training. The recognition results for most

of the smaller furniture items are excellent. The larger furniture items of the couch and

bed present some challenges, in part due to their size and the sensing limitations of the

Kinect. As the distance increases from the Kinect, the resolution of the depth data

decreases, resulting in increased uncertainty and reduced recognition. At the same time,

the Kinect’s viewing cone of 60 degrees may prevent the complete view of larger items

at a close distance.

Furniture orientation was also tested using the data from the uncluttered furniture rec-

ognition test. Results are shown in Table 4 for the eight directions tested, as error values

between the orientation angle detected and the ground truth, in degrees. Objects 1 and 3

(small round table and hexagon table) are excluded from this test due to their general

round shape. For the table shaped items that are symmetrical (coffee table, dining table,

desk, and bed), an orientation of less than 180 degrees is computed. The results show that

orientation is easier to compute for some viewing angles. For the symmetrical objects,

including the bed, orientation angle can be determined with low error rates from a range

Table 3

Recognition results for furniture items

Furniture Sample Without Clutter (%) With Clutter (%)

1. Round table 100 100

2. Blue chair 100 N/A

3. Hexagon table 100 100

4. Wood chair 87.5 N/A

5. Coffee table 100 87.5

6. Dinner table 100 100

7. Desk 100 100

8. Couch 67.5 N/A

9. Bed 75 N/A

Table 4

Error results of the orientation test for eight directions (in degrees)

Orientation

Furniture Sample 0 45 90 135 180 225 270 315

1. Round table 9 9 9 9 9 9 9 9

2. Blue chair 47 28 112 25 32 4 1 6
3. Hexagon table 9 9 9 9 9 9 9 9

4. Wood chair 10 35 47 37 12 2 4 7
5. Coffee table 1 0 2 2 9 9 9 9

6. Dinner table 1 3 1 3 9 9 9 9

7. Desk 5 5 1 5 9 9 9 9

8. Couch 48 172 21 51 15 5 5 1
9. Bed 6 2 5 9 9 9 9 9

Note: Low error values are shown in bold.
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of viewing angles. For the chair-like objects, including the couch, much better results are

obtained when viewing from the intrinsic front. This is not surprising, as the shape is not

always visible from the back. Thus, both distance and viewing angle can affect recogni-

tion and orientation results. Our strategy in the fetch task is to allow the robot to move

closer or approach from a different angle, if necessary, to provide a more confident rec-

ognition.

4. Conclusions

In this contribution we describe a corpus of spatial descriptions offered by older adults

for finding a target within a virtual house environment in the context of a fetch task. We

uncovered systematic differences in the word choice, selection of particular landmarks

such as furniture items, perspective adopted, and structure, as a function of the addressee

and instruction. We then describe the development of a critical cognitive process (deter-

mining perspective) and an essential perceptual process (recognizing furniture units) that

are informed by the corpus and that in conjunction with the linguistic strategies will

enable natural descriptions to be converted into commands that will direct the robot to

the target in question.

More generally, the key features of our approach that are informed by the corpus

include sensitivity to the addressee and the differential assumptions speakers make about

its capabilities; differential willingness to accommodate to the addressee; the task context

within which the descriptions are offered (specifying how to find an object vs. specifying

where the object is); the likely perspective and the likely structure of the description as a

function of addressee and instruction; and the reliance on certain objects in the house

(house units and furniture units but not object units) as landmarks.

Our goal is to establish a common ground with the elderly user by making the robot

adapt to the user’s needs as much as possible. Clark (1996) argues that common ground

in language is achieved as a joint activity through the interaction. This is illustrated in

the HCRC Map Task corpus (Anderson et al., 1991) for human–human communication

and proposed as language games for better robot communication (Steels, 2001). However,

the results of our study show that seniors may want a more streamlined communication

with a task-oriented robot and do not necessarily want to speak to robots the same way

they speak to other people. A discourse with interaction and/or learning can be added if

necessary to further establish a common ground between the fetch robot and the elderly

user.

In conclusion, the work presented here is part of a larger project that has the goal of

developing an intelligent system that uses natural spatial descriptions to direct a robot to

a target object’s location in a fetch task. To accomplish this task, important capabilities

will be required for cognitive, linguistic, and perceptual processing by the robot. This

article presents the first step toward developing such a system that adapts to the elderly

user’s language preferences instead of requiring a specialized language for the robot.
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Appendix

Target Object Reference Object 1 Reference Object 2

Notepad Video game Kleenex

Book Flower Fan

Letter Laptop Tray

Mug Purse Hat

Cell phone Vase Candle

Wallet Lamp Plant

Keys Monitor Frame

Glasses case Alarm clock Statue
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