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Abstract— We propose a simple and robust method to detect
heartbeats using the ballistocardiogram (BCG) signal that is
produced by a hydraulic bed sensor placed under the mattress.
The proposed method is found beneficial especially when the
BCG signal does not display consistent J-peaks, which can often
be the case for overnight, in-home monitoring, especially with
frail seniors. Heartbeat detection is based on the short-time
energy of the BCG signal. Compared with previous methods
that rely on the J-peaks observed from the BCG amplitude,
we are able to achieve considerable improvement even when
significant distortions are present. Test results are included for
different BCG waveform patterns from older adults.

I. INTRODUCTION

In the United States, 37% of the population is affected
by cardiovascular related diseases [1]. In order to avoid
fatal consequences, in-home monitoring systems have been
under development for the purpose of detecting early signs of
cardiovascular abnormalities. Monitoring the pulse rate and
other cardiac parameters during sleep can provide critical
information about the health of a subject.

Our interest in health monitoring especially targets older
adults with chronic health conditions, including cardiovascu-
lar diseases. We include cardiac and respiration monitoring
in the home through the use of a bed sensor positioned
under the mattress. Motion sensors and depth cameras also
capture behavioral patterns, overall activity, and in-home gait
patterns [2]-[4]. The system, with automated health change
alerts, is currently installed in 75 senior apartments and runs
continuously 24 hours a day as part of a longitudinal study.

Many challenges in longitudinal, in-home studies arise
from the unstructured setting. Senior participants use d-
ifferent types of beds and pillows and sleep in varying
body positions. Some are more restless than others; health
conditions and medications can affect sleep patterns. Some
participants sleep with their pets (cats and dogs). There is
also limited ground truth. Thus, the setting is inherently
noisy.

Other sensor systems have been proposed for pulse rate
monitoring, including a video camera [5], ultrasonic device
[6], mattress-based sensor [7], infrared diode [8], and pillow-
based sensor [9]. Some are suitable for in-home sensing
and some are not. However, in any case, robust methods
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are needed to address the noisy setting. Important cardiac
parameters to track include heart rate, heart rate variability,
and irregular heartbeats or arrhythmias. The detection of
heartbeats in the BCG signal can aid in tracking these
parameters noninvasively.

Wearable sensors are also emerging for tracking cardiac
health. Although these can offer important alternatives for
younger subjects, many older adults are unable to use
and recharge wearable sensors consistently (e.g., those with
cognitive problems) [10][11]. As a result, we have been
exploring bed sensing.

In this paper, we use a hydraulic bed sensor for capturing
Ballistocardiogram (BCG) [12] signals. It is composed of a
water tube and a pressure sensor, and is placed under the
mattress to maintain sleeping comfort. The data acquired
from the sensor contain the BCG signal superimposed in the
respiration signal. Compared with the previous method [13]
that uses the same sensor, the proposed method of detecting
heartbeats is simpler and more resilient to noise or distortions
in the BCG signal.

This paper is organized as follows. The details of
the hydraulic bed sensor and the measurement settings
are described in Section II. In Section III, the heartbeat
detection method based on energy is presented, and the
algorithm is developed in Section IV. Section V describes
the datasets used for performance evaluations. Results are
given in Section VI. Finally, we conclude in Section VII.

II. THE HYDRAULIC BED SENSOR

The hydraulic bed sensor is composed of a transducer and
a pressure sensor. The transducer is 6 cm wide and 50 cm
long, and is filled with 0.4 liter of water. An integrated silicon
pressure sensor is attached to one end of the transducer for
measuring the vibrations of the discharged hose. In this study,
four transducers are placed underneath the mattress as shown
in Fig. 1 and the outputs are connected to the filtering circuit
(Maxim MAX7401) that consists of an amplifier and a filter.
The amplifier is the 741 op-amp and the filter is the 8th-order
integrated Bessel filter. The four channel signal is sampled
at 100 Hz and quantized to 12-bit precision using the analog
to digital converter (ADC) (National Instrument NI6212).

A piezoelectric pulse sensor (ADInstruments MLT1010) is
used to provide the ground truth to evaluate the performance
of the proposed method. This sensor is attached to a finger;
the ground truth signal is sampled synchronously with the
hydraulic bed sensor.
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Fig. 1. Position of bed sensors.

III. METHODOLOGY
The data from a single transducer channel can be modeled

as [14]

m(n) = r(n)+g(n)+ ε(n) (1)

where r(n) is the respiration component and g(n) represents
the BCG signal. ε(n) is the additive noise.

Due to the lower frequency of the respiration rate com-
pared to the pulse rate, r(n) can be removed easily by
a high-pass filter. We use a band-pass filter instead for
eliminating the high frequency noise as well. The filtered
data is represented by

m′(n) = BPF(m(n)) = g(n)+ ε
′(n). (2)

Typically the J-peaks appear in g(n) with a periodic pattern
at the pulse rate. Thus the heartbeat can be detected from
m′(n) by the J-peak locations. One strategy to detect the
J-peaks in m′(n) is to apply machine learning techniques
[13][15], eg. feature extraction combined with clustering as
in [13]. Quite often the captured BCG signal can be highly
distorted by the position and body type of the subject, as
well as the type of mattress, making the detection of J-peaks
in m′(n) difficult. To illustrate, Fig. 2(a) gives a segment
of a typical output from one transducer, Fig. 2(b) shows the
respiration component extracted from Fig. 2(a), and Fig. 2(c)
depicts the band-pass filtered signal, yielding the BCG signal.
When looking at m′(n) at 2, 5, 13 seconds, the waveforms do
not have consistent patterns that makes the machine learning
method difficult to locate the J-peaks [13].

In this paper, we propose to use the short-time energy
rather than the amplitude of m′(n) to locate the peaks for
heartbeat detection and pulse rate estimation. We use a
sliding window of 0.3 second (30 samples) long to obtain
the short-time energy. The window advances 0.01 second (1
sample) each time to produce a new energy value. We choose
the window length to be 0.3 seconds due to the fact that the
typical separation of two successive peaks in the observed
BCG is about 0.2 second. The extra 0.1 second provides
a margin to ensure multiple peaks can be observed within
the window. The windowed data can be represented by the
equation:

xi(n) = w(n)m′(n+ i) (3)

where xi(n), i = 0,1, ...,M− 1 denotes the windowed and
segmented data, i is the segment number (frame index) and
n is the sample number within a segment. N is the window
size equal to 30 and w(n) is the window function. We use a
rectangular window in this study for simplicity.

The energy in segment i is obtained by:

ξi =
N−1

∑
n=0

xi(n)2 . (4)

We then locate the peaks from the result in (4) to detect
heartbeats and to obtain a pulse rate estimate.

Fig. 2. Data from a young healthy female. (a) a channel of the bed sensor
signal, (b) the respiration component, (c) the signal in (a) after band-pass
filtering.

IV. ALGORITHM

Fig. 3 shows the processing block diagram. First, we apply
a band-pass filter to remove the respiration component and
high frequency noise. We separate the data into segments
and compute the short-time energy individually for each of
the four channels. Four heartbeat detections and pulse rate
estimates are generated from the short-time energy profiles
by locating the local peaks. Next, we select one of the four
as the final estimate, based on the DC level. Outlier removal
is then done by checking whether the estimate is too far
away from the moving average pulse rate value. Outlier
removal is also useful in many unpredictable situations such
as the occurrence of body motion.

Fig. 3. The data processing blocks for heartbeat detection and pulse rate
estimation.
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A. Band-pass Filter

The bandpass filter is the Butterworth filter with an order
equal to 6. The 3-dB cutoff frequencies are set to 0.7 Hz
to 10 Hz. They are chosen based on the fact that a typical
respiration rate is below 0.5 Hz and the frequency content
of BCG is not higher than 10 Hz. Fig. 2(c) shows the result
after band-pass filtering. When compared with Fig. 2(a) it is
obvious that the heartbeat information appears on the time
domain waveform.

B. Sequential Heartbeat Detection

Fig. 4(a) illustrates the short-time energy waveforms for
the bandpass filter output given in Fig. 2(c). The red circles
are the detection results of the local peaks. They coincide
with the J-peaks in the bandpass filter signal which are
illustrated in Fig. 4(b). We found that the algorithm works
properly even when the BCG signal shows irregularity as
around 2, 5 and 13 seconds as can be seen in Fig. 4(b).
Fig. 4(c) shows the ground truth measurement using a finger
sensor for reference purpose.

The beat-to-beat interval is the separation of two succes-
sive local peaks in the short-time energy profile. When the
average pulse rate is of interest, we report the average of the
beat-to-beat estimates over the latest 60 seconds, in every 15
second interval.

Fig. 4. Results of heartbeat detection (a) peak detection after smoothing
the energy results, (b) locates the peaks in filtered data based on (a), (c) the
ground truth signal from a finger sensor.

C. Sensor Selection

Whether we are interested in the beat-to-beat interval or
average pulse rate, there will be four estimates, one from
each transducer. The next step is to select the best estimate
from the four. Based on the characteristics of the pressure
sensor, a higher DC level in the measured transducer signal
indicates that the transducer makes better contact with the
body and hence produces a more reliable BCG signal for
processing. Thus, we select the pulse rate estimate that comes
from the transducer having the highest DC level as the final
estimate.

Occasionally, body movement or other unknown condi-
tions will generate unwanted distortion or noise in the data.
Large movements are filtered out based on signal amplitude,

TABLE I
DETAILS OF PARTICIPANTS.

Dataset Subject Gender Age Height Weight Cardiac
(cm) (kg) history

D0 1 male 33 178 82 No
D0 2 female 16 173 63 No
D0 3 male 27 160 61 No
D1 1 male 91 170 81 No
D1 2 male 99 165 64 Yes
D1 3 male 86 188 99 Yes
D1 4 male 89 168 97 No

which is significantly higher. Other artifacts are filtered
by maintaining a moving pulse rate average and rejecting
estimates if they deviate more than 15 beats per minute from
the moving average.

V. DATA DESCRIPTION

The performance of the proposed heartbeat detection
method is evaluated using two datasets. The first dataset D0
contains three young, healthy subjects with different body
types in a well-controlled environment. Subjects are asked
to lie flat on their backs for 10 minutes while the data are
being collected. The subject details are listed in Table I.

The second dataset, D1, consists of the measurements from
four elderly people with an average age of 91, taken in their
apartments at TigerPlace [16] on their own beds. Two of
the subjects have had prior cardiac conditions. Based on the
ages and heart conditions of the subjects, the acquired bed
sensor data are expected to have inconsistent BCG signals
with significant amounts of distortions. The details of the
four subjects are listed in Table I. Subjects are asked to lie
flat on their backs for 4 minutes during data collection. The
data collection procedure was approved by the IRB.

VI. RESULTS

Two sets of results will be presented. One is for the beat-
to-beat interval and the other for the average pulse rate
estimate. In the former case, we compute the estimation
error with respect to the finger sensor ground truth. Table II
shows the average beat-to-beat error in seconds for dataset
D0. When the signal contains a typical BCG pattern, we can
obtain quite accurate detection results.

For the second case, we compute the error rate using

Error Rate =
1
M
·

M−1

∑
i=0

|GT (i)−Est(i)|
GT (i)

×100 % (5)

where GT (i) is the ground truth from the finger sensor, Est(i)
is the estimated pulse rate over a 60 seconds frame, M is
the total number of frames, and i is the frame index. We
ignore the frames that are recognized as invalid estimates
when computing the error rate. In addition to the error rate,
we also provide the detection rate. It is defined as the relative
number of frames in which we are able to obtain average
pulse rate estimates with sufficient confidence [13].

The results are shown in Tables III and IV. We also
provide the results for the method from [13] for comparison,
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which uses the clustering approach (CA) to identify the J-
peaks in the time-domain signal for pulse rate estimation.

For D0, we have clean BCG signals from the bed sen-
sors due to the well-controlled environment and young and
healthy subjects. The results in Table III illustrate that
the proposed and CA methods both have 100% detection
rates and low error rates, and their performances are very
comparable in all three subjects. A Bland Altman plot of D0
compares the proposed method to ground truth, as shown in
Fig. 5.

Fig. 5. The Bland Altman plot of D0 with proposed method compared to
ground truth.

Obtaining heartbeat detections and pulse rate estimates for
the dataset D1 is more challenging. Fig. 6 shows a typical
portion of the bed sensor data from subject 3 as an example.
T1 to T4 denote the signals from the four transducers. The
BCG signals show the data highly distorted. Table IV gives
the numerical results. Subject 1 has a high pulse rate. Subject
2 has a low pulse rate with high variations. Subject 4 has
two dogs that slept with him. The CA method has a low
detection rate for subjects 1, 3 and 4 while the proposed
method maintains 100% detection rate for all 4 subjects.
The proposed method appears to have a much lower error
rate than CA for this dataset. The proposed method has the
highest error rate of 4.86% for subject 2, possibly caused by
a high pulse rate variation.

As a further test, in-home, overnight bed sensor signals
were selected from three TigerPlace residents; Table V shows
details of these residents, which we will call dataset D2.
Bed sensor signals were sampled from longitudinal data and
processed using the proposed energy algorithm. During these
overnight periods, we do not expect the subjects to always
lie on their backs. Fig. 7-9 show the heartbeat detection for
these segments, even with different BCG waveform patterns.
Finally, we tested BCG signals from a patient in the cardiac
intensive care unit (ICU) who was recovering from an aortic
valve replacement and a bypass graft (age 57). Fig. 10
shows the heartbeat detection in the case of arrhythmia, with
the corresponding ECG and arterial pressure signals. IRB-
approved procedures were followed for data collections.

VII. CONCLUSIONS

In this paper, we propose a simple and yet effective
algorithm to obtain the heartbeat detection and pulse rate
of a subject using a hydraulic bed sensor. The sensor data

TABLE II
BEAT-TO-BEAT DETECTION RESULTS OF DATASET D0.

Subject Average beat-to-beat error (seconds)
1 0.058 seconds
2 0.037 seconds
3 0.063 seconds

TABLE III
PULSE RATE DETECTION AND ESTIMATION RESULTS OF DATASET D0.

Subject Error Rate Detection Rate
Proposed Method CA Proposed Method CA

1 0.90 % 3.09 % 100 % 100 %
2 0.67 % 1.56 % 100 % 100 %
3 1.85 % 2.52 % 100 % 100 %

TABLE IV
PULSE RATE DETECTION AND ESTIMATION RESULTS OF DATASET D1.

Subject Error Rate Detection Rate
Proposed Method CA Proposed Method CA

1 3.14 % 18.49 % 100 % 15.39 %
2 4.86 % 7.77 % 100 % 88.89 %
3 4.06 % 17.86 % 100 % 21.43 %
4 2.74 % 18.00 % 100 % 31.25 %

Fig. 6. Example data segment from subject 3 for the four transducers,
T1-T4.

TABLE V
DETAILS OF IN-HOME, OVERNIGHT PARTICIPANTS (D2).

Subject Gender Age Height Weight Cardiac
(cm) (kg) history

1 male 91 170 79 No
2 female 92 171 100 Yes
3 male 86 188 98 Yes

Fig. 7. Overnight, in-home BCG segments from subject ]1 (a) energy-based
heartbeat detection, (b) detected peaks in the BCG.
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Fig. 8. Overnight, in-home BCG segments from subject ]2 (a) energy-based
heartbeat detection, (b) detected peaks in the BCG.

Fig. 9. Overnight, in-home BCG segments from subject ]3 (a) energy-based
heartbeat detection, (b) detected peaks in the BCG.

Fig. 10. Cardiac ICU patient after surgery. (a) ECG and Arterial pressure,
(b) energy-based heartbeat detection, (c) detected peaks in BCG.

contains the respiration and BCG signals. A band-pass filter
is used to remove the respiration component and noise. A
short-time energy profile is generated whose local peaks are
used to detect heartbeats and estimate pulse rate. We maintain
a moving average of the pulse rate estimates to remove the
estimation outliers caused by significant distortions in the
BCG signal resulted from body movements. Compared to
the previously developed clustering based method CA, the
proposed method has a higher detection rate and a lower error
rate even when the bed sensor data have noisy BCG signals,
often found in overnight, in-home data, especially from frail
older adults. We plan to conduct a more detailed study on
how the subject’s posture and body movement affect the

measurement signal quality, consistency and the performance
of the proposed method, using the Electrocardiogram and
other cardiac signals for reference.
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