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Abstract—Falls have become a common health problem among
older adults. In previous study, we proposed an acoustic fall de-
tection system (acoustic FADE) that employed a microphone array
and beamforming to provide automatic fall detection. However, the
previous acoustic FADE had difficulties in detecting the fall signal
in environments where interference comes from the fall direction,
the number of interferences exceeds FADE’s ability to handle or
a fall is occluded. To address these issues, in this paper, we pro-
pose two blind source separation (BSS) methods for extracting the
fall signal out of the interferences to improve the fall classification
task. We first propose the single-channel BSS by using nonnegative
matrix factorization (NMF) to automatically decompose the mix-
ture into a linear combination of several basis components. Based
on the distinct patterns of the bases of falls, we identify them ef-
ficiently and then construct the interference free fall signal. Next,
we extend the single-channel BSS to the multichannel case through
a joint NMF over all channels followed by a delay-and-sum beam-
former for additional ambient noise reduction. In our experiments,
we used the Microsoft Kinect to collect the acoustic data in real-
home environments. The results show that in environments with
high interference and background noise levels, the fall detection
performance is significantly improved using the proposed BSS ap-
proaches.

Index Terms—Blind source separation (BSS), fall detection,
microphone array, Microsoft Kinect, nonnegative matrix factor-
ization (NMF).

1. INTRODUCTION

S older live longer and more independent lives, falls have

become an important health problem. A recent report [1]
shows that one-third of older adults aged above 65 fall each
year in the United States. The direct cost for medical care of
the fall-related health problems has reached to $23.6 billion in
2005 [1]. Falls have become the leading cause of injury death
among older adults [1]. The risk of death among older adults
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rises significantly when falls fail to be reported to caregivers in
time [2]. It has been reported that the longer the lie on the floor,
the poorer is the outcome of the medical intervention [3]. To re-
duce the intervention time, systems that automatically detect and
report a fall in a timely manner using different types of sensors
have been widely investigated [4]-[8]. Among these sensors, the
acoustic sensors are of our great interest due to their low cost
and their ability to function in occluded or dark environments.

The use of acoustic sensors for fall detection has been previ-
ously reported in the literature [8]-[11]. In [11], we proposed
an acoustic fall detection system (acoustic FADE) based on a
circular array of microphones. The circular microphone array
was able to provide a good estimation of source position un-
der challenging acoustic environment and reduce the number of
false alarms significantly using the height estimate of the sound
source. In addition, the utilization of a conventional delay-and-
sum beamformer (DSB) enhances the source signal so that better
fall recognition rate is achieved.

Although the proposed acoustic FADE [11] achieves encour-
aging fall detection performance, deployment of the device may
be difficult and could be invasive in real-home environment due
to the large size of the microphone array (see the device pictures
in [10], [11]). In addition, the previous acoustic FADE [11] had
difficulties in locating the fall signal source using the conven-
tional direction of arrival (DOA) estimator or the sound source
localization (SSL) when multiple interferences were present. To
address these issues, in [12], we proposed an acoustic FADE
based on Microsoft Kinect that consists of a nonuniformly
spaced linear array of four microphones. The Kinect system
is very compact and has already been deployed in TigerPlace,
our living laboratory situated in Columbia, Missouri. Further-
more, the acoustic source position can be deduced accurately
from the depth sensing camera [13], [14]. The accurate posi-
tion aides the use of a more sophisticated adaptive beamformer,
such as the minimum variance distortion-less response (MVDR)
beamformer, to reduce the interferences coming from multiple
directions [15], [16].

Although this Kinect-based approach does better address the
multi-interference issues, limitations remain in some particular
cases. The first case is when a fall signal comes from the same
or closer direction as the interference (e.g., radio, TV). The
second case is when a fall occurs outside the field of view
(FOV) of Kinect sensors. MVDR in these two cases results in
little enhancement and even distorted the source (fall) signal.

To reduce the interferences regardless of the above limita-
tions, blind source separation (BSS) techniques which separate
the source of interest out of interferences are considered. Non-
negative matrix factorization (NMF) is a powerful tool [17]
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that is utilized widely in BSS applications. NMF factorizes the
mixture signal properly and extracts the bases corresponding to
different sources. Traditionally, most of the NMF-based BSS
approaches focus on separating the bases of the source of inter-
est using supervised-learning methods such as support vector
machine, the Gaussian mixture model, and expectation maxi-
mization [ 18]-[20]. To apply these approaches for fall detection,
a training model which consists of prefactorized fall bases needs
to be built, making the entire FADE inefficient and impractical.
In addition, the previous studies on the multichannel extension
of the NMF-based BSS approaches [20], [21] mainly focus on
deriving the multiplicative update rules of NMF by maximizing
the likelihood of all channels. However, they fail to take the
phase information (relative time delays) from multiple channels
into account. It is known that the phase information from multi-
ple channels is useful for reducing background noise by utilizing
the beamforming techniques [11]. Therefore, to increase the per-
formance and improve the robustness against background noise
in the traditional NMF-based BSS approaches [18]-[21], addi-
tional noise reduction functionality is developed by exploiting
the phase information in multichannel NMF processing.

In this paper, we first propose an efficient single-channel
NMF-based BSS approach for separating the fall signal through
the analysis of their basis patterns. Then we extend the work
for multichannel reception. Finally, we use the TigerPlace [22]
dataset collected by Kinect devices to evaluate the fall detection
performance using the proposed BSS approaches.

The proposed NMF technique to improve fall detection is
generic and is not limited to Kinect platform. It can be applied
to other acoustic sensing system when beamforming fails to
cancel interferences. They include the interferences arriving at
directions close to the fall signal, the interferences are too strong
that DOA estimation is not able to locate the fall signal, or the
number of interferences exceeds the degrees of freedom of a
microphone array.

The structure of the paper is as follow. In Section II, we
describe the methodologies of the proposed efficient BSS
approaches for separating the fall signal from interferences.
Section III provides the description of the experimental data
from the Kinect platform and the performance evaluation of
fall detection. In Section IV, we present the experimental results
and their analysis. Section V gives discussions, conclusions, and
future work.

II. METHODOLOGIES OF THE PROPOSED EFFICIENT BSS
APPROACHES FOR SEPARATING FALL SIGNAL

A. Single-Channel NMF-Based BSS

NMEF [17] is a linear decomposition method that factorizes a
nonnegative V' matrix (whose elements are not negative) into the
product of two nonnegative matrices W and H . In mathematical
form,

V~WH (1)

where V' is M by N, W is M by K, and H is K by N. The fac-
torization expresses each column of V' as a linear combination
of the columns of W, where the coefficients of combination

are arranged in a column of H. For NMF to be effective, the
number of basis vectors K in W should be chosen such that
MK+ KN < MN.

NMEF is not unique because the factorization cannot be exact
unless under very limited special cases. Depending on different
measures in the goodness of factorization, different pair of W
and H could result. We shall use the Kullback—Leibler (KL)
divergence measure in this work since it is found appropriate
for music/audio applications [23]. The KL distance measure for
NMF is

V WH Z ZdK mna WH]ran)
m=1n=1
()
an
dKL ( mn s [WHLTHL) V”L” [WH]
- an + [WH}mn . (3)

In(2)and (3), V,,,, stands for the (m, n)th element of V. The
definition of [W H],, = is similar and In is the natural logarithm.

Through taking the derivatives of (3) with respect to matrices
V and H, the decomposition solution is obtained by iterating
the multiplicative updates:

N

ka.l an
Wokis1 = - : Hy,, 4)
Zfl\zl Hk,n,l n=1 [WH]mn,l
M
H n, \4 n
Hy, 0 = bl [W};L] Wik (5)

Zm 1kavl m=1

in which £ = 1,2,..., K and [ represents the iteration index.
Iteration stops when the decomposition error is sufficiently small
or the maximum number of iterations 7. is reached, where
Tinax 18 set to 200 throughout the experiments in this paper.

We now describe how to apply NMF for BSS. The received
single-channel mixture signal is of the form

s(t)=s1(t)+s2(t)+---+sp(t) t=0,1,...,L -1
(6)

where the background noise is ignored here for ease of descrip-
tion and it will be taken into account in Section II-C. There are
P sources and their components are s (¢),s9 (t),...,sp (1).
The discrete time index is ¢ and L is the number of data samples.
We would like to recover s, (¢),p =1,2,..., P from s (¢).

The first step to apply NMF is to segment s (¢) into a sequence
of frames. Let the frame size be M and the amount of overlap be
Q. The total number of frames, which is the number of columns
of the matrix V to be factorized, is

N=[(L-M)/(M-Q)+1

mn,l

(7

In (7), [(+)] represents the largest integer not greater than the
real number (-). Each column of V' is the fast Fourier trans-
form (FFT) magnitude taken over a frame. Thus, V is simply
the magnitude of short-time Fourier transform (STFT) of the
mixture signal.

After factorization of such V' using KL-NMEF, the resultant
columns of W, wy, are interpreted as the frequency bases of
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Fig. 1. Processing prototype of single-channel NMF-based BSS approach.

magnitude responses. The kth row of H hr , called the temporal
basis here, gives the contributions of wy, at different time frames.

In the context of BSS, each source has different frequency
bases such that the columns of W can be delineated into P
groups, each corresponds to a different source. Let the submatrix
W, be the collection of K, frequency bases that are classified
as from the pth sound source. Thus,

P
Wp = [w(l)’p,wm)’p, o ,'IU(KP)J)] with K = ZKP (8)
p=1

where w) . k = 1,2, ..., K, is the rearranged kth frequency
basis of source p. We collect the rows of H for source p as
follows:

T
H), = [h(l),pvh@),p""’h(Kp),p] : ©

The STFT magnitude of source p,

s, ‘ is reconstructed by

Kp

= Zw(k)-l?h(j;c)ﬁp = WPHP'
k=1

S,

(10)

Since the characteristics of sound source are dominated by its
magnitude response, the phase in the STFT of sound source p can
be approximated by the phase of the mixture signal ZS (m,n).
Thus, we have

S, (m,n)=[W,H,] /S (m,n). (11)

The separated individual source signal in the time domain is
constructed by applying the inverse FFT (IFFT) on each frame
of S » and joining the time-domain signal in each frame with the
overlap-add method [23]. The processing block diagram of the
single-channel NMF-based BSS approach is shown in Fig. 1.
Recall that FFT magnitude is symmetric, we can reduce the
number of rows by nearly a factor of two when doing NMF,
hence saving computation time while maintaining the same fac-
torization results.

B. Bases Separation Using the Proposed Unsupervised
Learning Method for Single-Channel NMF-Based BSS

The performance of BSS using NMF depends very much on
how good we are able to classify each basis vectors in W to one
of the P sources. The classification can be made in supervised
methods which requires training or in unsupervised manner. We
shall propose, in this work, a simple and effective unsupervised
technique for the classification of bases vectors.

We use an example to illustrate the rationale and concept of
the proposed technique. Let us begin with an 18.8-s segment of
acoustic data recorded in the real-world home environment. The

Fig. 2. Segment of mixture signal which contains both a fall and a TV audio
signal.
Fig.3. Plots of KL-NMF decomposed W (a) and H (b) on the data demoSS.

The lower intensity values (darker) indicate higher magnitude of frequency
bases in W and larger temporal factors in H.

segment, denoted as demoSS, contains the mixture of one fall
signal and one TV audio signal, whose time domain waveform
is plotted in Fig. 2.

We choose a frame size of 1024 points and an overlap ratio
of 50% between adjacent frames by following [20]. Such set-
tings are commonly used in audio processing. At F; = 16-kHz
sampling frequency, the total number of frames is N = 586 as
computed by (7). We keep only the first half of the FFT points
for decomposition due to symmetry and the size of V' is 513
by 586. To achieve sufficient separation accuracy, the number
of bases is chosen as K = 60 based on some analysis of the
experimental data collected at home environments. Fig. 3 gives
the NMF decomposition results in gray level images in which
W is 513 by 60 and H is 60 by 586.
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Fig. 4. Plots of selected normalized temporal bases ﬁkT. ,@k=2(0b)k=
11, (¢) K = 31, and (d) £ = 29, on data demoSS.

We propose to use H instead of W to separate the fall and

TV basis components. Let us use ﬁf to denote the kth row of
H normalized by its two norm. Fig. 4 shows four of such nor-
malized temporal bases out of 60, where (a) and (c) correspond
to fall, (b) and (d) correspond to nonfall signals.

As can be seem from Fig. 4 that (a) and (c) have a significant
impulse-like peak in the region where the fall occurs. However,
since the TV signal is continuous in time, (b) and (d) show more
continuous and random patterns. Based on the observations,
we shall obtain features to capture the spiky behaviors in the
normalized temporal basis vectors to separate fall and nonfall
signals. Thresholding of the features will next be applied to
select the fall bases and signal reconstruction will be followed.

1) Energy Ratio Features: The energy ratio is defined as
dividing the energy of temporal factors during the occurrence
of a fall by the total energy of the entire normalized temporal
basis which is known to be one. The energy ratio of temporal
basis k can be formulated by

Anp+Anpg

D

n=1

B, = hi (Ny — Ang, +n)? (12)

where N is the expected frame index when fall occurs, Any
and Anp, are offsets from left and right of IVy so that a portion
for calculating the energy is formed.

In practice, the fall portion in a particular processing window
is not known. In sequential processing, BSS is applied to a block
of data defined by a sliding window, and a new sequence of
data is processed when a sliding window advances to the next.
It is reasonable to make the assumption that the fall portion
always resides in the very end of a sliding window. To make this
happen in our case, the overlap between adjacent processing
windows needs to be determined carefully so that the portion
covers an entire fall signal. Therefore, we determine the size of

Fig. 5. Separation of fall temporal bases using thresholding on data demoSS.

Fig. 6. Separated fall waveform in data demoSS using the proposed single-
channel NMF-based BSS; original composite signal before source separation
(light color), separated fall signal (dark color).

the portion as 1 s based on some analysis and the overlapping
rate is then determined by (L — F)/L in which L refers to the
size of a sliding window, which is the same as the number of
data samples for BSS as indicated from (6) in Section II-A.
Thus, we can rewrite (12) as follows:

'I?,p

Ek = Z;{;(NO +TL)2

n=1

(13)

where n,, = 30 as computed by (7) and [V is the frame when
fall occurs.

Depending on the sensing platform, side information may be
available to assist in determining the time location where possi-
ble fall occurs. For instance, the Kinect platform has depth image
sensor that provides very reliable instances when potential fall
activities occur.

2) Temporal Bases Separation by Thresholding: To separate
the fall temporal bases, the energy ratios of all the temporal bases
are passed to a discriminator with a positive threshold ®. The
binary decision rule of the discriminator is expressed by

ifEp > @
h,. is

-7 ( afall basis
{ . (14)
anon fall basis if £, < .

Fig. 5 shows the discriminator to separate the fall temporal
bases out using thresholding on data demoSS.

In Fig. 5, ® is manually chosen as 0.8. In practice, ® can
be adaptively determined using the noise-plus interference only
frames in the data segment before a possible fall signal is de-
tected. As a result, in this example, temporal bases with indices
of2,3,8,13,15,16,31,33, 35,55, and 58 are separated out for
fall signal reconstruction.

3) Reconstruction of the Separated Source Signal: The se-
lected temporal bases are used for reconstructing the STFT
magnitude and the time domain data of the fall signal using the
method described in Section II-A. Fig. 6 shows the separated
waveform of the fall signal.
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Fig.7. Processing prototype of multichannel joint-NMF-based BSS approach.

The performance of the proposed fall source separation ap-
proach can be evaluated using some standard methods [24].
However, we are more interested in its resulting fall detection
performance. The performance evaluation using receiver op-
erating characteristic (ROC) curves [25] will be described in
Section III.

C. Proposed Extension to the Multichannel BSS

To apply the proposed single-channel NMF-based BSS to a
microphone array, we need to derive its multichannel version.
Since NMF does not change the phase of the signals from mul-
tiple channels, the conventional DSB can help reduce the back-
ground noise of the separated source signal given the source
position is well estimated by SSL [26].

Thus, we propose the multichannel joint-NMF-based BSS
which is developed by first applying a single NMF to jointly
factorize the signals from all channels together. The proposed
bases separation approach described in Section II-B is used to
separate the individual source signals. DSB is then utilized on
the intended signal source to enhance the result. Fig. 7 shows the
processing prototype of the proposed multichannel joint-NMF-
based BSS approach with .J channels.

The motivation for doing NMF jointly over all channels to-
gether is to improve factorization accuracy. The signal compo-
nents in different channels are the same except from different
delays and random noises. Hence, in ideal case without noise,
the NMF of the signal from a channel is the same as from an-
other channel. This is not the case when noise appears. Joint
NMEF is able to suppress the noise to achieve better factorization
accuracy since the noise components from different channels
are independent.

To perform the joint decomposition, we define the matrix
V' U) which is formed by the STFT magnitude of the jth channel
signal s; (t) by

Vi) = [vg"),vé‘”,...,v&],) (15)
where N is the number of frames as defined in Section II-A.
Then we construct the matrix V' for factorization as follows:

V= {vgl),vgm,...,vg‘])f vél),vg),...,vé‘])f

.,'u('])} . (16)

The number of columns in V is now NJ. After NMF, W
remains to have a dimension of M x K and H has a larger
dimension of K x NJ. Then we apply the proposed bases sepa-
ration in Section II-B to jointly separate the fall bases from H.
The columns of the matrix H can be partitioned into J subma-

o 0

Fig. 8. Processing prototype of the acoustic FADE using the proposed mul-
tichannel BSS approach (Thr = positive scalar height threshold, “Y"—Yes,
“N”—No, “I"—classified as a fall, and “0"—classified as a nonfall).

trices by collecting the columns of H at a regular interval of J.
Leth,,n=1,2,...,NJ,be the nth column of H. Then

mn?

HY) — [h;, !

e =1,2,....J (17)

) h/(Nfl)JJr]'} ¥

is the temporal basis matrix for the data of the jth channel.
The number of basis vectors K is set the same as in the single-
channel NMF decomposition since each channel encounters the
same signal and interferences but shifted by different amounts
of relative delays. Therefore, we can reconstruct the separated
source signal y; () for the jth channel using the selected bases
from HU),

Let u be the estimated source position, the enhanced signal
7 (t) is obtained by applying DSB to the J separated signals as
follows:

<
|
—

y; (t+7; (@) (18)

~l =

g(t) =

Il
o

j
where 7; (@) represents the relative correction of delayed sam-
ples at the jth channel with respect to 7 (). Note that 7; (%) is
often not an integer. Efficient implementation of DSB with non-
integer time shift is done directly in the frequency domain [11]
after BSS before the time-domain conversion.

D. Proposed Acoustic FADE Algorithm

The acoustic FADE algorithm is shown in Fig. 8 which is
similar to the previous version in [11] except that the proposed
multichannel NMF-based BSS approach is utilized for enhanc-
ing the source signal. Interested readers can refer to [11] for the
description of SSL, height discriminator, and fall recognition
components.

III. EXPERIMENTAL DATA AND PERFORMANCE EVALUATION
A. Description of Experimental Data From Elderly Homes

The dataset, denoted as DO used for training in this experi-
ment was collected at TigerPlace in year 2012. The collection
of experimental data has been approved by the Institutional
Review Board at the University of Missouri. The data col-
lection was performed in ten apartments. In each apartment,
a Kinect device is installed above the apartment door view-
ing the entire living room. Each month, a stunt actor (see [11]
for the three stunt actors’ information) comes into each room
and performs falls and other activities under the instructions of
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TABLE 1
DESCRIPTION OF FALL TYPES PERFORMED BY STUNT ACTORS
Initial Motivations Directions
status
Standing Loose balance or momentary | Forward, backward, Ieft,
loss of consciousncss right or straight down.
Sitting From the chair Forward, left, right, sliding
forward out of the chair as
the chair slides back or
sliding backward out of the
chair as it slides front.
Lying From the bed or couch Fall to side, upper body
falls first or hips and
shoulders fall first.
Walking Tripping Trip forward or sideways,
and slipping slip forward, sideways or
backward.

the nursing staff [27]. DO consists of 120 segments of clean
(very low noise) fall signals and 120 segments of clear non-
fall signals and they are extracted from the Kinect record-
ings. Each segment has duration of 1 s. The types of falls are
categorized based on the faller’s initial status: standing, sitting,
lying, tripping, and slipping. The details of the fall types are
described in Table I.

The types of nonfalls are partially the same as the one used
in [11] including phone ringing, talking, typing, and some chal-
lenging ones such as dropping books, dropping boxes, and
rolling bottles. Segments of typical TV audio and background
noises are also included.

Another dataset, named D1 is a three-day long sequence
which was collected recently in TigerPlace using the living room
Kinect. D1 has a total of 50 falls performed by the stunt actors
and also contains a variety of typical daily activities from the res-
ident (the resident is living alone). The stunt actors A and B are
different from the ones for creating the dataset DO. The detailed
data and stunt actors’ information are described in Tables II and
II1, respectively.

Typically, the source positions or DOAs are estimated using
SSL algorithms such as steered response power [26] and multi-
ple signal classification [28]. One advantage of using the Kinect
platform is that the DOA of the signal of interest can be ob-
tained with reasonable accuracy from the depth images, thereby
reducing the complexity in performing DOA estimation.

B. Simulation of the Mixture Signals at Kinect Microphones

A linear microphone array, such as the one in a Kinect device,
can utilize the azimuth DOA only. Let 6 represents the DOA of
the faller and ¢, represents the DOA of the p}h interference
out of P;. Under the assumption of far-field acoustic model, the
source configuration for a Kinect microphone array is drawn in
Fig. 9.

In this experiment, we use one 10-s segment of prerecorded
TV audio signals to simulate the interferences. To mix the fall
signals with the interferences, the duration of each fall signal
in DO is extended to 10 s by padding zeros in front of the fall
signal. Thus, the fall signal resides in the tail portion as assumed
in Section II-B.
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TABLE II

DESCRIPTION OF THE THREE-DAY LONG DATASET (KINECT CAPTURES
FrROM 7 AM TO 11 PM EACH DAY AND TOTAL 48 HOURS)

Description of the general activites

Dayl
(stunt
actor

rooml)

7AM —

Cooking”, watching TV', door opening and
closeing”, phone ringing, talking”, etc.

10:17 AM

Stunt actors and nursing staffs come, talking, 4
falls out of Kinect FOV (2 occluded by a coach
and 2 in the kitchen) with TV on, 8 falls very
close to a TV with TV on followed by 4 falls with
TV off.

10:40 AM

Stunt actors and nursing staffs left.

— 11 PM

Cooking", watching TV, bathing’, etc.

Day2
(stunt
actor

room2)

7AM —

Cooking*, resident left’, etc.

10:53 AM

Stunt actors and nursing staffs come, talking, 4
falls very close to a TV with TV on, 8 falls with
TV on, 8 falls out of Kinect FOV (4 in the kitchen
and 4 occluded by fumnitures) with TV on
followed by 4 falls with TV off.

11:28 AM

Stunt actors and nursing staffs left.

— 11 PM

Resident comes back, watching TV, bathing*,
etc.

Day3
(stunt
actor
B,
room3)

7AM —

Cooking”, watching TV", phone ringing, talking’,
reading’, etc.

11:06 AM

Stunt actors and nursing staffs come, talking, 10
falls out of Kinect FOV (5 in the kitchen and S in
the bedroom) with TV on.

11:40 AM

Stunt actors and nursing staffs left.

—11PM

Cooking”, watching TV, bathing’, etc.

Comments

All stunt actor falls performed in this dataset
consists of all types as described in Table 1. The
TV volumn changes at each fall (-5SdB<SIR<5dB).
SNR is below SdB during the data collection.
Multiple-interference cases such as multiple
people are talkings while a fall occurs are
included. No resident falls are reported during the
absence of stunt actors and nursing staffs. “*’
represents the activity types identified by
listening only.

Fig. 9.

TABLE III

STUNT ACTORS’ INFORMATION

Gender | Age | Height | Weight

Stunt actor A

Male 31 5'5" 225 Ibs

Stunt actor B

Female | 39 5'3" 130 Ibs

Source configuration of a Kinect microphone array. “Mic” denotes the

Kinect microphone.
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Without loss of generality, we design the experiments par-
ticularly for the case which is illustrated in Section I as the
motivation of using BSS approaches. The case describes a sin-
gle interference whose DOA 1is the same as that of a fall signal
source, i.e., with the specific settings: ¢1 = ¢y =6, Py = 1.

Thus, the procedures of generating the mixture signal at each
Kinect microphone are described as follows:

1) Make Mic0 marked in Fig. 9 as reference channel at which
the mixture signal is generated by simply adding the zero-
padded fall signal to the interference signal. Specify the
DOA of ith fall signal, 89 i =1,2...,120, randomly
(following uniform distribution) bounded by !9(” ] < 57°
(horizontal angular FOV) [29]. Use the segment of TV
audio as the interference source and scale its amplitude
based on the specified signal-to-interference ratio (SIR)
and signal-to-noise ratio (SNR) levels. Then specify its
DOA corresponding to the ¢th fall signal by qﬁgi, =9,

2) Correct the phase of the it fall signal at Mic1, Mic2, Mic3,
and Mic4 according to §). Similarly, adjust the phase of
the corresponding interference signal corresponding gbg{,

3) Add the adjusted ¢th fall signal to the corresponding inter-
ferences at the four mics to generate the mixture signals.
Store the ith 4-channel mixture signal in a new dataset,
named as D2.

To compute the STFT magnitude of the 10-s mixture signal,
we choose the frame size as 1024 points with 512 overlapped
points. The number of frames is 311 as computed by (7). We set
the number of bases to &X' = 50. Thus, the factorized matrix W
has a dimension of 513 by 50 and matrix H has a dimension of
50 by 311.

C. Performance Evaluations Using Both Simulated and
Real-World Data

To validate the improvement of the proposed BSS approaches,
we use DO to create 10 classifiers by decomposing DO into ten
folds in a cross-validation manner. For each classifier, the testing
fold is replaced by the corresponding data from D2 in which
interference and noise are added. The procedure of generating
a cross-validation ROC curve, determination of ROC operating
threshold, and the definitions of performance metric indices
such as sensitivity, specificity, accuracy, and area under the ROC
curve (AUC) are all explicitly described in [11].

To evaluate the performance of the proposed BSS approaches
on real-world dataset D1 (see Section III-A), we use DO as train-
ing dataset and detect falls in D1 using the proposed sequential
processing as described in Section II-B) at a particular classi-
fier threshold. Ground truths of fall time locations are obtained
based on the Kinect RGB video [29]. Thus, the number of de-
tected falls and the number of false alarms per hour are both
obtained. By evaluating D1 at different classifier thresholds, an
ROC curve is then generated.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

The purpose of the experiments is to validate the proposed
source separation approaches for enhancing the fall signal by

Fig. 10. Tenfold cross-validation ROC curves of fall detection using MulSS,
SglISS, and Mix when SNR = “clean” and SIR = —5 dB.

TABLE IV
TENFOLD CROSS-VALIDATION RESULTS OF MULSS, SGLSS, AND MIX AT
DIFFERENT SNR LEVELS AND SIR = —5 DB (SENSITIVITY, SPECIFICITY, AND
ACCURACY VALUES ARE IN % AT THE OPERATING THRESHOLDS)

‘clean’ 5dB 0dB -5dB -10dB

AUC 0.946 0.941 0.933 0.901 0.844
Scnsitivity 97 96 93 87 81
MulSS | Specificity 81 79 80 78 78
Accuracy 89 88 87 83 80

AUC 0.931 0.899 0.853 0.713 0.482
Sensitivity 90 93 83 68 53
SgISS | Specificity 81 70 76 82 61
Accuracy 86 82 80 75 57

AUC 0.763 0.726 0.669 0.452 0.246
Sensitivity 93 87 73 61 23
Mix Specificity 61 61 60 48 47
Accuracy 77 74 67 55 35

reducing both the interferences and the background noise. The
fall detection performances using both approaches—single-
channel NMF-based BSS denoted by SgISS and multichannel
joint-NMF-based BSS denoted by MulSS are evaluated when
SIR and SNR are at different levels. We also evaluate the perfor-
mance using the mixture signal from a single channel denoted
by Mix as the benchmark.

A. Performance Evaluation Using Simulated Dataset

D2 is used to evaluate the performance. The SNR levels are
specified as: “clean,” 5, 0, —5, and —10 dB. Channel indepen-
dent white Gaussian noise is used to simulate the background
noise and its amplitude is scaled based on the specified SNR
level for each channel. The background noise is added to the
data in D2 to obtain the new mixture signal. The cross-validation
ROC curves when SNR = “clean” and SIR = —5 dB are shown
in Fig. 10. The evaluation metric indices at different SNR levels
are tabulated in Table IV.
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Fig. 1. Tenfold cross-validation ROC curves of fall detection using MulSS,
SglSS, and Mix when SNR = “clean” and SIR = 0 dB.

TABLE V
TENFOLD CROSS-VALIDATION RESULTS OF MULSS, SGLSS, AND MIX AT
DIFFERENT SNR LEVELS AND SIR = 0 DB (SENSITIVITY, SPECIFICITY, AND
ACCURACY VALUES ARE IN % AT THE OPERATING THRESHOLDS)

‘clean’ 5dB 0dB -5dB -10dB

AUC 0.962 0.937 0.921 0.905 0.846
Sensitivity 93 97 93 83 86
MulSS | Specificity 88 76 78 83 73
Accuracy 91 87 86 83 80

AUC 0.944 0.922 0.873 0.856 0.578
Sensitivity 93 89 86 84 57
SgISS | Specificity 82 78 75 73 65
Accuracy 88 84 81 79 61

AUC 0.927 0.919 0.833 0.688 0.498
Sensitivity 92 87 84 67 61
Mix Specificity 82 85 71 65 54
Accuracy 87 86 78 66 58

Fig. 10 and Table IV show that the proposed multichannel
BSS approach achieves the best among the three at each SNR
level, which indicates that the beamforming has positive effect
even the fall and interference signals come from the same direc-
tion. The proposed multichannel BSS approach is still able to
achieve up to 80% accuracy at the most challenging acoustics
(SIR = —5 dB and SNR = —10 dB).

Fig. 11 shows the ROC curves when SNR = “clean” and
SIR = 0 dB. The evaluation metric indices at different SNR
levels are tabulated in Table V.

Fig. 11 and Table V show similar conclusion to the previ-
ous one when SIR = 0 dB that the proposed multichannel BSS
approach achieves the best results at each SNR. Since the inter-
ference level is smaller, the overall performance over the three
approaches is slightly better than the one when SIR = —5 dB.

Fig. 12 shows the ROC curves when SNR = “clean” and
SIR = 5 dB. The evaluation metric indices at different SNR
levels are tabulated in Table VI.

Fig. 12 and Table VI show that when both the interference
and background noise are sufficiently small, the performance of

Fig. 12.  Tenfold cross-validation ROC curves of fall detection using MulSS,
SglSS, and Mix when SNR = “clean” and SIR = 5 dB.

TABLE VI
TENFOLD CROSS-VALIDATION RESULTS OF MULSS, SGLSS, AND MIX AT
DIFFERENT SNR LEVELS AND SIR = 5 DB (SENSITIVITY, SPECIFICITY, AND
ACCURACY VALUES ARE IN % AT THE OPERATING THRESHOLDS)

‘clean’ 5dB 0dB -5dB -10dB

AUC 0.961 0.953 0.946 0918 0.864
Sensitivity 98 93 90 91 88
MulSS | Specificity 84 83 86 77 75
Accuracy 91 88 88 84 82

AUC 0.951 0.946 0.927 0.847 0.664
Sensitivity 94 92 89 75 61
SgISS | Specificity 87 83 83 85 77
Accuracy 91 88 86 80 69

AUC 0.984 0.943 0.859 0.776 0.589
Sensitivity 95 84 91 86 58
Mix Specificity 90 94 69 66 66
Accuracy 93 89 80 76 62

a single-channel mixture improves much more than the other
two proposed approaches. This indicates that in such high SNR
and SIR acoustic environment, a mixture signal should be used
for fall detection instead of using the interference-removed sig-
nals from the proposed BSS approaches. This is because the
negative effect of BSS in removing some small fall components
out-weighs the gain in eliminating the interference, where the
classifier is able to handle the interference in the case when it is
not too strong.

B. Real-World Dataset Processing Strategy

In order to optimize the overall fall detection performance on
a sequence of real-world dataset, the following three issues need
to be addressed.

1) Occlusion of a Fall: When a fall is occluded and out of
sensor FOV, it is impossible for the fall signal to propagate
through direct paths to the acoustic sensors, which results in the
failure of the proposed multichannel BSS approach. The pro-
posed single-channel BSS approach, however, is able to address
the occlusion issue. Since a Kinect is used, the simultaneous
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Fig. 13.  Block diagram of the processing strategy combining all three evalu-
ation approaches.

occurrence of the absence of the resident (out of living room)
and the occlusion of a potential fall (occluded by objects) can be
detected easily through depth sensing (no depth data is generated
when occlusion occurs).

2) Number of Interferences Exceeding the Degrees of Free-
dom of a Microphone Array: The proposed BSS approaches
separate the sources based on the temporal and spectral in-
formation of the mixture composite. Therefore, they are not
affected by the number of interferences and their DOAs. As a
result, multiple interference (P; > 2) situations can be treated
by BSS as a single-interference case (P; = 1) through lumping
all interferences together. The real-world experiment studies in-
clude multiple interference cases, as described in the comments
of Table II, to validate the performance of the proposed BSS
approaches.

3) Performance Decline in High SNR and SIR Levels: As
indicated in Fig. 12, the performance of the proposed BSS ap-
proaches in such a situation are not as good as the one using
a single-channel mixture. To detect such acoustic environment
with extremely high SNR and SIR levels, the overall level of
background noise and interference is measured by calculating
the average energy in the portion of the data which may contain
only the noise and interference signal. In a particular sliding
window as described in Section II-B1, we are able to calculate
the average energy F, of the portion of length L— F, over .J
channels by

— 1
B =
© J(L—-Fs)

> os@)7

1 t=

(19)

J L—-Fs—1

J

The decision of utilizing a single-channel mixture for pro-
cessing is made by comparing E, with a threshold £ which is
premeasured in the home environment during the absence of the
resident or the midnight when the resident is asleep.

Fig. 13 shows the block diagram of the processing strategy
which combines all three detectors (MulSS, SglISS, and Mix) as
described in Section IV-A in order to optimize the overall fall
detection performance. In the proposed acoustic FADE shown
in Fig. 8, the “proposed BSS technique” block is replaced by
the following processing strategy.

C. Performance Evaluation Using Real-World Dataset

The performance using the real-world dataset D1 is evaluated
using three detectors—proposed acoustic FADE using the pro-
cessing strategy described in Section I'V-B, the acoustic FADE
(replacing the block “proposed BSS technique” in Fig. 8 by a
conventional DSB) proposed in [11] and a single-channel mix-
ture (Mix). The corresponding ROC curves are plotted in Fig. 14.

Fig. 14. ROC curves of fall detection using the strategy combining all three
evaluation approaches and a single-channel mixture on the real-world dataset.

The energy threshold £ described in Section IV-B is chosen as
0.003 in this particular apartment.

Fig. 14 shows significant improvement using the proposed
strategy combining all three fall detection approaches compared
with the one using only a single-channel mixture. The proposed
system is able to achieve about 0.4 false alarms per hour when
the fall detection rate reaches up to 98% or only one fall is
missing. The performance using single-channel mixture how-
ever, never achieves 100% detection rate until its false alarm
rate reaches to about 200/hour (not shown in Fig. 14 for bet-
ter comparison). The performance using the previous acoustic
FADE [11] is slightly better than that of Mix but is still uncom-
petitive with the proposed one. The significant improvement of
the proposed acoustic FADE indicates that the proposed BSS
approaches are able to remove the interference at challenging
cases such as fall signals come from closer to the interference or
being occluded. The other two approaches fail to handle these
cases.

V. DISCUSSIONS AND CONCLUSION

This paper proposes both single-channel and multichannel
joint-NMF-based BSS techniques for incorporation into FADE
to address the following three issues: 1) when a fall comes from
the same or a close direction of interference; 2) the number of
interferences exceeds the degrees of freedom of a microphone
array; or 3) the occlusion of a fall. These issues result in complete
failure of the adaptive beamforming used in the previous work
[117],[12].

The proposed bases separation method in the single-channel
NMF-based BSS approach is quite effective. It is able to achieve
80% accuracy (see Table IV) when interference is very strong
(SIR = —5 dB) and background noise is moderate (SNR =
0 dB).

The proposed multichannel NMF-based BSS approach has
been illustrated to be more resilient to background noise as
compared to the single-channel one. However, the fall position
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must be known before using DSB. The fall position can be
obtained reliably and efficiently in the Kinect platform. It is
able to achieve 80% accuracy when both interference and noise
reach to the highest levels in the experiments.

It is also worth to mention that the proposed single-channel
and multichannel BSS approaches perform worse than the
single-channel mixture when the interference and background
noise levels are both sufficiently small (e.g., SNR > 30 dB and
SIR > 5 dB) as shown in Fig. 12. As described in Section II-B,
the potential fall bases in matrix H are separated based on the
energy ratio, which is independent of the changing of the over-
all basis energy. On the other hand, it has been found that some
of the factorized bases are actually shared by both fall signal
and noise-plus-interference components, which causes the loss
of some spectral information for reconstructing the fall signal.
Therefore, even extremely small level of interference and back-
ground noise in the mixture will distort the reconstructed fall
signal. Without any distortion of the fall signal and with the
domination of the fall energy, a single-channel mixture is ex-
pected to have better fall detection performance, due to the fact
that the classifier is able to handle small amount of interference
and noise.

To optimize the overall performance on real dataset, a pro-
cessing strategy is proposed by incorporating all the approaches.
A three-day dataset collected in elder home is used for validat-
ing the processing strategy. It has been shown that only one fall
is missing at a cost of 0.4 false alarms per hour by utilizing the
processing strategy. In conclusion, the proposed source separa-
tion approaches appear to have robust behavior to the changing
acoustic properties in real-world environments.

Future work will focus on improving the bases separation
methods by reducing the potential loss of spectral information
for fall signal reconstruction due to the sharing of the bases. In
addition, more real-world dataset will be collected and analyzed
to further evaluate the fall detection performance of our FADE
based on the proposed BSS approaches. Techniques to further
reduce the amount false alarms will also be explored.
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