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Doppler Radar Fall Activity Detection
Using the Wavelet Transform
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Abstract—We propose in this paper the use of Wavelet trans-
form (WT) to detect human falls using a ceiling mounted Doppler
range control radar. The radar senses any motions from falls as
well as nonfalls due to the Doppler effect. The WT is very effective
in distinguishing the falls from other activities, making it a promis-
ing technique for radar fall detection in nonobtrusive inhome elder
care applications. The proposed radar fall detector consists of two
stages. The prescreen stage uses the coefficients of wavelet decom-
position at a given scale to identify the time locations in which
fall activities may have occurred. The classification stage extracts
the time—frequency content from the wavelet coefficients at many
scales to form a feature vector for fall versus nonfall classification.
The selection of different wavelet functions is examined to achieve
better performance. Experimental results using the data from the
laboratory and real inhome environments validate the promising
and robust performance of the proposed detector.

Index Terms—Classifier, Doppler radar, fall detection, wavelet.

I. INTRODUCTION

UMAN falls are a main cause to morbidity among older
H adults (aged 65 years and older) [1]. Preventing falls and
detecting when they occur are important for elder care. Timely
detection of falls enables immediate assistance by caregiver and
minimizes the negative consequences of falls [2].

Apart from the clinical techniques, less expensive personal
fall detection devices are becoming available in the commer-
cial market. These devices can be broadly classified as wearable
[3]-[7] and nonwearable [8]-[17]. Nonwearable devices are of-
ten nonobtrusive and more acceptable to the users with bet-
ter comfort. A commonly found nonobtrusive fall detection
device is the video camera [8]-[12], where image processing
techniques can isolate and detect falls. However, visual-based
systems cannot function under low-lighting or occlusion en-
vironments. Another is the microphone array that utilizes
the acoustic signal generated from the impact with the floor
for fall detection [13]-[15]. Acoustic devices have the short-
coming of requiring relatively quiet environments with little
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multipath reflections. Both the visual and audio systems can
work and complement with each other for inhome fall detection
to provide reliable results. Both cannot be used; however, in the
bathroom area where statistics have shown to be challenging
for fall detection [18]. Having video camera in the bathroom is
obviously not preferred. Also, the small dimension of a bath-
room would create too many multipath reflections to render the
proper performance of an acoustic system, not to mention the
strong acoustic interferences from water flowing. In this paper,
we explore a relatively new approach based on motion sensing
by a Doppler range control radar (RCR) that would fill the need
for fall detection, especially in the bathroom.

A human fall generates motion that creates frequency change
between the sent and received signals of a Doppler radar. An-
alyzing the radar signal carefully can detect human falls [19],
[20]. A Doppler radar fall detection system separates itself from
the image-based and the acoustic-based system in that it can op-
erate in low-lighting and highly noisy environments. In addition,
the radar detection system can address the privacy concerns,
which are particularly crucial in the bathrooms or bedrooms.

One challenge for radar fall detection is that the radar will
generate responses not only from human falls but also from other
human or nonhuman motions. Signal processing is an indispens-
able component to screen out the nonfall activities for improving
processing efficiency and increasing detection accuracy. Mel-
frequency cepstrum coefficients (MFCC) have been proposed
previously for radar fall detection [19]. MFCC is known to have
excellent features for speech recognition [21]. However, the ra-
tionale of using it in radar is not clear. Extensive evaluations
under practical inhome environments indicate the performance
of MFCC is not adequate and generates an exceeding number
of false alarms in radar fall detection.

This paper investigates another signal processing technique
called Wavelet transform (WT) [22] for radar fall activity de-
tection. WT is a very effective method to analyze and extract
the characteristics of a signal that has nonstationary behaviors
[23]-[25] such as the radar fall signal. Indeed, WT has been
proposed recently by many researchers to process biomedical
signals such as electrocardiographic [26] data and heart sound
[23], [24] with numerous successes.

A fundamental question of using WT for radar fall detection
is the choice of the wavelet function. WT uses the dilated and
translated versions of a wavelet function to form bases for signal
decomposition. In this paper, we examine over 100 wavelet
functions and identify the ones that are suitable for fall detection.

The proposed radar fall detection is a two-stage processing:
prescreening and classification. The radar data comes in con-
tinuously and the first stage applies the WT coefficients at a
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particular scale to locate an instance when potential fall activi-
ties may have occurred. The second stage forms feature vector
using the WT coefficients at many scales over the time region
identified and performs fall versus nonfall classification through
a trained classifier. A detection would trigger an alert to a
caregiver.

The contributions of this paper includes the introduction of
using the WT for radar fall detection, the developments of the
WT prescreener and classifier that perform significantly bet-
ter than the previous methods, and the performance evalua-
tions of the proposed radar fall activity detector with a wide
variety of fall types and the actual fall data from an elderly
person.

Closely related to our study, Gadde et al. [27] recently pro-
posed the use of wavelet processing for fall detection as well,
where three features are extracted from the continuous WT of
a radar signal for fall versus sit/stand classification using the
Mahalanobis distance. The investigation here uses the discrete
WT at dyadic scales instead which would reduce the complexity
[28]. Gadde et al. [27] chooses the Morlet wavelet, and we con-
duct a study to determine the wavelet function that yields the
best performance for the fall detection problem. The features
of the proposed classifier are different from those in [27]. We
are able to advance the performance as illustrated in Section
VI, through extensive evaluations on data measurements from
laboratory and inhome environments containing realistic and
actual human falls of many kinds. In addition, we establish the
use of the wavelet coefficients at a certain scale for prescreening
to identify time segments for fall versus nonfall classification.
Gadde et al. [27] focuses on classification only and applies an
energy detector for prescreening, which yields larger amounts
of false alarms for the classifier to handle.

This paper is organized as follows. Section II gives a brief
background on Doppler radar. Section III provides the rationale
of using the WT for radar fall activity detection. Section IV
elaborates the details of the proposed fall activity detector using
the WT. Section V describes the data measurements for per-
formance evaluations, and Section VI provides the results and
comparisons. Finally, we draw conclusions in Section VII.

II. DOPPLER RADAR

Doppler radar is a device that produces responses resulted
from the Doppler effect caused by the motion of an object
along the radar-object direction [29]. A Doppler radar sends
out gated sinusoids (modulated rectangular pulses) at radio fre-
quencies and measures the echo reflected by a moving object.
The Doppler effect creates frequency difference between the
sent and received signals and the radar output contains harmon-
ics at the frequency change.

The radar used in this study is a commercially available pulse-
Doppler RCR [30] which has a price comparable to a webcam.
The pulse repetition rate is 10 MHz and the duty cycle is 40%.
The carrier frequency f, is 5.8 GHz. The radar mixes the sent
and received signals and applies a low-pass filter to produce
the output. The radar output is then digitized at a sampling
frequency of 960 Hz.

1 L 1 L 1
5 10 15 20 25 30

Seconds

(a)

200 —
180 . L I 20

160 - ;

; -40

140 s
120 f il . 5
-80
-100
-120

0 5 10 15 20 25 30
Time (s)

(b)

Fig. 1. (a) Waveform of radar output from human fall, the fall is occurred at
14 s. (b) Spectrum of (a).

Fig. 1(a) gives a sample waveform of the radar output con-
taining a human fall, and Fig. 1(b) is its spectrogram. The fall
happens at around 14 s. Due to the dynamics of the fall, a
higher frequency response appears at the beginning followed
by lower frequency content. A human fall typically reaches to
about v = 5 m/s before hitting the ground. Using the Doppler
frequency formula [31]

2
Afmax = ?Ufc (1)

where ¢ = 3 x 10° m/s is the light speed. We expect the fall
signal covers a frequency range from O up to the maximum
Doppler shift of about A f,,.x = 200 Hz. The prediction is con-
sistent with the spectrogram shown in Fig. 1(b).

Although we use this particular radar for investigation, the
WT technique for radar fall detection is general and can be
applied to other Doppler radar with straightforward adjustments.

III. WAVELET TRANSFORM

The Fourier transform (FT) is typically used when analyzing
data in the frequency domain. One fundamental assumption of
the FT is that the data are stationary (or at least wide-sense
stationary) with time invariant statistical properties. It divides
the frequency range occupied by the data into bins of equal
size to examine the frequency content within. For biomedical
applications, most of the signals encountered are nonstationary,



SU et al.: DOPPLER RADAR FALL ACTIVITY DETECTION USING THE WAVELET TRANSFORM 867

Possible fall
time stamp
Data —> SWT et yoetsnl | Classifier —>f ol
formation nonfall
Fig. 2. Data processing blocks for fall activity detection.

and they contain high-frequency components of short bursts and
low frequency content of long durations. The FT is not sufficient
and not suitable to analyze these kinds of signals, and the WT has
been developed to better examine these kinds of nonstationary
signals [22].

A human fall typically starts with a quick movement of falling
down, followed by a slow motion of lying on the floor. A Doppler
radar captures the entire fall activity and produces similar dy-
namic characteristics of short duration of high frequencies and
long period of low frequencies in the output. This kind of signal
behavior makes the WT a good choice for data analysis and
feature extractions for Doppler radar.

The continuous WT of a signal x(¢) is defined as [22]

X(,a) :%/m(t)f* (t;T> dt @)

where f* is the wavelet function. a is the scale factor, and
it is positive for practical applications. The wavelet is dilated
when a > 1 and contracted when a < 1. 7 is the translation and
1/y/a is the energy normalization factor. Different choices of
the wavelet function will yield different WT.

The data are in sampled form in practice. By limiting the scale
a to be dyadic, the WT has a very efficient implementation by
using a pair of filters, one high-pass and the other low-pass, to
represent the wavelet function [22]. The resulting WT is often
termed as Discrete Stationary Wavelet Transform (SWT) [32]
in the literature. SWT 1is an online processing that transforms
the incoming data sequentially through successive applications
of the filters. The SWT is redundant in the sense that it will
generate the same number of samples in each dyadic scale as in
the original data.

It is imperative to determine which wavelet function can pro-
vide better performance in extracting the fall information and
suppressing the nonfall activities. We shall use the area under
the receiver operating characteristic (ROC) [33] curve to select
the wavelets. The details will be deferred to Section IV.

IV. ALGORITHM

Fig. 2 shows the block diagram of the proposed WT fall ac-
tivity detector. The data first passes through SWT to generate
the wavelet coefficients at a number of dyadic scales. The co-
efficients at a particular scale, scale 4 in our case, will be used
to identify the possible time location at which fall activity may
have occurred. The SWT coefficients of other scales around the
identified time location will form a feature vector, which is used
by a classifier to perform fall versus nonfall classification. The
details of the prescreening stage to locate the fall occurrence and
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Fig. 3. Multilevel wavelet decomposition of Doppler radar signal.

the classification stage to detect the fall behavior are elaborated
in details below.

A. Prescreening Stage

Prescreening should maintain 100% true positives, while
seeking to minimize as many false positives as possible. To
make a balance between efficiency and complexity, we use only
a single scale for processing in this stage.

Through theoretical study and validation by experimental re-
sults, scale 4 is the best scale for prescreening. At the sampling
rate of 960 Hz, scale 4 corresponds to a frequency range of
about 120 to 240 Hz [22]. Using (1), we get the speed range of
3 to 6 m/s, which is what we expect at the early stage of a fall
before hitting the ground.

Fig. 3 is an example of the wavelet decomposition over a
data segment shown at the top, which contains a fall around
10 s and several nonfall activities between 17.5 and 30 s. The
SWT outputs at scales 2¢, denoted by D; (n),i = 1,2,...,6 are
depicted below the data segment, where the wavelet function
is the reverse biorthogonal 3.3 (rbio3.3) [34]. Note that they
do not share a common range in the y-axis. Although the WT
coefficients over the fall are becoming larger as the scale in-
creases from 2 to 64, the coefficients Dy (n) (scale 4) has the
largest fall to nonfall distinction. This observation is consistent
with the expectation from theory. We, therefore, use D (n) for
prescreening.

The fall confidence value for prescreening is the short-time
energy of Ds(n) over a moving window to average out varia-
tions. The window is Hamming; the window size is 0.5 s and
the amount of overlap is 50%. Hence, the location resolution of
a fall is 0.25 s. In essence, the prescreener detection value at
frame j is

N
C(j) =Y (w)(Da(l + §(N/2))))* . ©)

=1

where w(l) represents the Hamming window and, N = 480
corresponds to the number of samples in 0.5 s.

A typical fall lasts about 2 s, and a detection is declared
if several consecutive C'(j) values over a 2 s window exceed
the threshold. The frame that has the maximum prescreener
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value among the neighboring frames will be assigned as the
potential fall location and it will be denoted by j,. We use
a 0.5 s frame instead of 2 s for computing the prescreener value
to provide a more accurate time location of a possible fall event
to the classifier. A 0.5 s window size also allows us to reuse the
prescreener values in the classifier.

Wavelet Selection: 1t is essential to determine which wavelet
function is more suitable for fall detection. We shall use the
detection performance curve which is the detection rate ver-
sus the number of false alarms, and calculate the area under
the curve as an index to evaluate the detection performance
from different wavelet functions. When computing the area, the
y-axis is the detection rate from O to 1 and the x-axis is from O to
the largest number of false alarms for reaching 100% detection
over the wavelet functions tested. The better wavelet function
for fall detection is the one that gives largest area.

In generating the detection performance curve, the detec-
tion rate and the number of false alarms are obtained using
the prescreening detection statistic C'(j) after alarm merging
by stepping down the detection threshold. A typical fall is not
more than 2 s long, and we have one detection value for every
0.25 s. Contiguous detections up to a maximum of eight frames
are merged together with the largest among them as the merged
confidence. Noncontiguous detections are counted as separate
even if they are within eight frames.

The ROC is produced using the dataset collected in the lab
as will be described in Section V. We defer the details of the
results for optimum wavelet selection to Section VI.

B. Time—Frequency Features

The alarms from the prescreening stage detects any motion
at 3 to 6 m/s. This is a characteristic for a fall. Other activities
such as sitting down rapidly on a chair or standing up quickly,
however, would create similar motion at the velocity range and
result in strong detection. Most importantly, the dynamic be-
havior of a fall that gives rise to the variations in the frequency
content during a fall has not been explored. The classification
stage focuses on extracting the time—frequency features from
the WT to improve the fall detection performance.

The feature vector for classification is the concatenation of
the features from several frames centered at the fall location j,
identified by the prescreener. For a given frame j, we compute
the energy of the WT coefficients within after windowing:

N
EG) =Y (w(t) Di(1+(N/2)) ) 4)
I=1
where i = 1,2,...,6, w(l) is the Hamming window, D;(n) is
the WT coefficients at scale 2/, and N = 480 is the window size
in samples corresponding to 0.5 s. The values E; (j) characterize
the time—frequency content represented by six dyadic scales in
frame j. The window advances 0.25 s. (240 samples) to yield
the time—frequency content for the next frame.

The identified fall location from the prescreener is at the early
stage of a fall before hitting the ground. We, therefore, collect
the time—frequency content over the time range from 1 s before
the fall location to 1.5 s after for classification. Considering a

typical fall of 2 s long, the extra 0.5 s provides a margin for
capturing the fall. This duration, under a frame size of 0.5 s and
50% overlap, translates to four frames before and four frames
after the frame j,.

The main purpose of the classification stage is to exploit the
changes in the time—frequency content during a fall to achieve
better detection performance. Rather than using F;(j), we re-
move the energy factor in each scale through normalization with
the WT energy at that scale over the fall duration

Ei(j)
= EilGy +m)
where j = j, — M,j, —M +1,...,5, + M,and M = 4.The
features of frame j are

v(i) = [£1(7), B2(9), -, Es(4)].- (©6)

The overall feature vector for classification is

Ei(j) = S

V=[Vj M, VM1, V4] (N

The feature vector contains six normalized energies per frame
over nine frames, giving a length of 54.

C. Classifier

We use the nearest neighbor (NN) classifier with the feature
vector v. NN is the special case of the k-NN classifier having k
equal to 1. Given a test sample vy, we obtain the /; norm [35]
between v and the nearest training sample of falls Vi, ain fanl

diStfa‘ll = |Vtest - Vtrain,fall‘ . (8)

The [; norm with respect to the closest nonfall training sample
is obtained similarly

diStnonfall - |Vtest - Vtrain,nonfall| . (9)
The statistic for fall detection is

conf = diStnonfall - diStfall . (10)

Varying the detection threshold will trace out a detection per-
formance curve.

Although simple, NN provides reasonably good results due
to the effectiveness of the time—frequency features from the WT.
We have tested other classifiers such as SVM with linear and
Gaussian kernel functions and the results are not as good as NN.

V. DATA DESCRIPTION

The Doppler radar used in the experimental study is the GE
Security PrecisionLine RCR-50 [30] whose characteristics have
been described in Section II. The radar data acquisition unit is
DATAQ DI710 [36] at 960 Hz sampling. The data collections
from human subjects have been approved by the Institutional
Review Board at the University of Missouri.

The performance evaluation of the proposed fall detection
system contains three datasets. The first dataset DO was collected
in 2011, under a laboratory that simulates a home environment.
The second dataset D1 was acquired in 2013, in the bathrooms
of several senior residence apartments at TigerPlace [37]. The
third dataset D2 was taken also in a senior residence apartment
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TABLE I
DESCRIPTION OF DO

TABLE III
STUNT ACTOR INFORMATION OF D1

Fall times Acted Nonfall times
Loose balance-Forward Walk 486
Loose balance-Backward Kick 107
Loose balance-Left Clapping strongly 107
Loose balance-Right Bend over 4

Loss consciousness-Forward

Loss consciousness-Backward
Loss consciousness-Left

Loss consciousness-Right

Loss consciousness-Straight down
Trip and fall-Forward

Trip and fall-Sideways

Slip and fall-Forward

Slip and fall-Sideways

Slip and fall-Backward

Reach-fall (chair)-Forward
Reach-fall (chair)-Left

Reach-fall (chair)-Right
Reach-fall (chair)-Sliding forward
Reach-fall (chair)-Sliding backward
Couch fall-Upper body first
Couch fall-Hip first

L i i i i i b b i b b b b b b b b e i

TABLE II
STUNT ACTOR INFORMATION OF DO

Height Weight
Subject Gender Age (cm) (kg)
Stunt actor A female 32 160 61
Stunt actor B female 46 163 53
Stunt actor C male 30 173 71

at TigerPlace in 2013, but in the living room (not the bathroom)
with actual falls from an elderly resident. The data were recorded
continuously in time as the detection system operates in clinical
practice and we did not manually isolate out the fall and nonfall
segments.

For DO, the dimension of the simulated living room was 9 m x
8.2m x 3m (L x W x H). The radar was mounted at the ceil-
ing center pointing downward. The dataset contains 21 kinds
of falls from a combination of various fall types and direc-
tions as tabulated in Table I. Each was performed five times
from professional stunt actors, whose statistics are summa-
rized in Table II, to strongly resemble the falls of elders after
training by nursing staff [38]. The dataset has eight kinds of
acted nonfalls that are typical daily activities. The total num-
ber of falls is 105 and that of acted nonfalls is 704. The total
length of DO is 145 min. The data were collected and processed
continually.

In addition to the intentional nonfalls described in Table I,
there are many unintentional nonfall activities during the data
collection such as warming up, actively moving right before
or after falls, sitting down on a chair, reclining on a sofa, and
standing up after performing each fall. These activities create
an additional 286 nonfalls. Furthermore, when preparing the
experiment, repositioning the sofa, opening the door, moving

Height Weight
Subject Gender Age (cm) (kg)
Stunt actor A female 34 160 60.8
TABLE IV
DESCRIPTION OF FALLS IN D1
Fall Jan Feb Mar Apr May
Loose balance-Forward 0 1 2 2 6
Loose balance-Backward 1 0 2 0 6
Loose balance-Left 1 1 0 0 6
Loose balance-Right 1 1 2 0 6
Loss consciousness-Forward 0 1 2 0 0
Loss consciousness-Backward 1 0 2 0 0
Loss consciousness-Left 1 1 0 0 0
Loss consciousness-Right 1 0 2 0 0
Loss consciousness-Straight down 0 1 0 2 0
Trip and fall-Forward 1 0 0 0 0
Trip and fall-Sideways 1 1 0 0 0
Slip and fall-Forward 1 1 2 0 0
Slip and fall-Sideways 0 1 2 2 0
Slip and fall-Backward 0 0 2 2 0
Reach-fall (chair)-Forward 0 0 2 0 0
Reach-fall (chair)-Left 1 0 0 0 0
Reach-fall (chair)-Right 1 1 0 0 0
Reach-fall (chair)-Sliding forward 1 1 2 0 0
Reach-fall (chair)-Sliding backward 0 1 2 2 0

the fall protection pad, and pulling the chair will also generate
many nonfall activities.

In dataset D1, the stunt actor A, the same as the
one in DO with information given in Table III, per-
formed falls and nonfalls at three different bathrooms
at TigerPlace apartment over a period of five months.
Two bathrooms have dimensions 2.6 m x 24 m X
2.7 m and one has 2.3 m x 2.3 m x 2.7 m. The radar was
mounted in the middle of the bathrooms, above in the attic. The
dataset D1 has 211 min in total from the collections over five
different months. The kinds of falls in D1 (see Table IV) are the
same as in DO except the last two. Fourteen types of nonfall ac-
tivities are specifically performed to emulate real-life scenarios
as follows. The counts for them in the five months are listed in
Table V.

1) Bend at the knees and stoop to a squatting position on
the floor, from a standing position.

2) Bend down and kneel on the floor, from a standing
position.

3) Bend down and kneel on the floor, wait for 2 s, then lie
down on the floor, from a standing position.

4) Bend down to plug an appliance into an electrical outlet
close to the floor, from a standing position.

5) Squat to tie a shoe, from a standing position.

6) Sit on the floor with the legs tucked under the body, from
a standing position.

7) Sit on the floor with the legs extended from the body,
from a standing position.
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TABLE V
DESCRIPTION OF NONFALLS IN D1

Nonfall Type Jan Feb Mar Apr May
1 0 0 0 0 2
2 1 0 0 0 2
3 1 1 0 0 2
4 1 1 2 2 0
5 0 1 2 2 0
6 0 0 2 0 0
7 0 0 0 0 0
8 1 2 2 2 4
9 2 1 4 0 2
10 0 1 2 2 2
11 1 0 2 0 2
12 1 1 0 0 2
13 1 1 2 0 0
14 3 3 6 2 6
TABLE VI

RESIDENT’S (IN TIGERPLACE) INFORMATION OF D2

Height Weight
Subject Gender Age (cm) (kg)
1 female 75 160 63.5

8) Perform three sit-ups and some stretches of upper
and lower extremities, from a lying position on the
floor.

9) Slowly rise to a half kneeling position, then rise to a

standing position, from a lying position on the floor.

Appear to trip but will regain balance and continue walk-

ing, from a walking position.

Walk forward for 3 s and then stop suddenly, from a

standing position.

Walk forward for 3 s and then stop suddenly and turn

around, from a standing position.

Walk to a stationary chair and sit on it, from a standing

position.

Bend over to pick up a book on the floor, from a sitting

position in a chair.

As in DO, D1 also contains those unintentional nonfall activ-
ities, which are not listed in Table V.

The dataset D2 is real life data acquired during the daily liv-
ing of an elderly resident whose statistics are summarized in
Table VI. The radar was placed above the middle of the living
room (4.4 m x 6.4 m x 2.7 m) at the attic in a TigerPlace
apartment. The dataset is ten days long containing 13 real falls
from the resident. At least one fall occurred in each day and the
normal daily activities contribute to nonfalls. The subject has a
cat that has a weight of 3.8 Kg. The staff of the TigerPlace came
inside the apartment every day to help the subject and other
people visited during a day. The data portions with staff or visi-
tors present are removed, for the purpose to assess performance
of the radar fall detection system under natural behavior of the
resident alone. Indeed, automated fall detection is not urgent
when others are present.
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V1. EXPERIMENTAL RESULTS
A. Wavelet Selection

We shall use the detection performance from the prescreener
on DO to evaluate the performance of different wavelet functions
for fall detection.

We test 111 commonly used wavelet functions for evaluations
[28], [34]:

1) Daubechies (db) 1 ~ 45;

2) biorthogonal (bior) and reverse biorthogonal (rbio) series
(1.1,1.3,1.5,2.2,2.4,2.6,2.8,3.1,3.3,3.5,3.7,3.9, 4.4,
5.5,6.8);

3) coiflets (coif) 1 ~ 5;

4) discrete approximation of Meyer wavelet (dmey);

5) symlets (sym) 1 ~ 30.

The areas under the detection curves from the wavelet func-
tions are sorted in descending order and the results after normal-
izing them with the largest area are shown in Fig. 4 using cross
symbols. The best five wavelets are “rbio3.3,” “db3,” “sym3,”
“rbiol.3,” and “bior2.2.” Fig. 5 shows the low-pass and the high-
pass filter representation of “rbio3.3.” The worst one is “rbio3.1”
with a normalized area of 0.85.

To support the use of the second level of wavelet decompo-
sition (a = 4) for prescreening, Fig. 6 shows the ROC curves
from different scales of the wavelet rbio3.3. It confirms that
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Fig. 6. Prescreening ROCs of DO using the wavelet coefficients from rbio3.3
at different scales.

the wavelet coefficients at scale 4 provide better detection than
those from other scales.

A better wavelet function for prescreening would yield
smaller number of nonfalls for classification. It would reduce
the effort of a classifier and provide better detection accuracy
after classification as well.

We next examine the classification performance of different
wavelet functions, at the detection locations identified by the
prescreener using its best wavelet function “rbio3.3.” The areas
under the detection curves relative to the largest are shown
in Fig. 4 using circle symbols. The top five wavelets for the
classification stage are “rbio3.3,” “coif4,” “db10,” “bior2.6,” and
“dbl11.” Itis interesting that “rbio3.3” gives the best performance
for both prescreening and classification.

For the results presented in the rest of this section, we use the
“rbi03.3” in both the prescreening and classification stages.

B. Performance Evaluation

1) Prescreening: For reference purpose, we generate the
performance of the energy detector from the input signal as
follows:

M

37 2 wm)(z(n +3(M/2)))*)

n=1

Xenergy (J) = (11)

where Xepergy (J) represents the signal energy in frame j, and
2(n) is the radar data samples. The index n denotes the sample
number within the segment, and M corresponds to the number
of samples with the 2 s window size. w(n) is the Hamming
window function. We shall use Xcnergy (¢) to create the energy
detector ROC curve.

In addition to the energy detector, we also generated the re-
sults from the detector developed in [19], which is based on
the short-time Fourier transform (STFT). Figs. 7 and 8 com-
pare the fall detection performance from the three prescreeners
for datasets DO and D1. As expected, both the proposed WT

Detection Rate
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Fig. 7. Prescreener detection performance for DO.
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Fig. 8. Prescreener detection performance for D1.

prescreener and the STFT prescreener perform better than the
energy detector; the difference is particularly obvious in DI.
The proposed WT prescreener is much more effective than the
STFT prescreener. At 95% detection rate, the reduction in the
number of false alarms is almost by a factor of 3.

2) Classification: We shall use the proposed prescreener to
locate the possible fall activities and then apply a classifier
to improve the performance. We shall compare the proposed
wavelet features with the MFCC features developed in [19]. For
a fair comparison, both features are used to train the same kind
of classifier, which is the NN, for classification. We also im-
plemented the classification method from [27] that is based on
three time-scale (TS) features and the Mahalanobis distance.
The cross validation uses leave one out in the training and
testing [39].

Fig. 9 shows the ROC classification performance, in terms
of sensitivity versus 1-specificity, for DO. The results from the
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Fig. 10. ROC curves for D1 using leave one out cross validation.

MECC classifier are worse than the prescreener at the sensitivity
below 90% and comparable above. The performance of the
TS classifier is also below the prescreener. The proposed WT
classifier is able to provide significant performance gain over
the prescreener.

To obtain a better understanding, we analyzed the false alarms
of the proposed classifier to reach 100% sensitivity. Among
these 95 false alarms, 59 are caused by significant human activ-
ities such as moving around for preparing and finishing the data
collection; 11 from intentional kick actions for time synchro-
nization; 7 from the stunt actors standing up after performing
falls; 6 from the warm up actions of the stunt actors; 5 from the
stunt actor motion activities right before or after falls; 4 from
clapping strongly; 2 from stunt actors bending over; and 1 from
a stunt actor lying down on the sofa.

Detection Rate

#FA

Fig. 11.  ROC curves of the proposed classifier for D1 in five different months.

The performance for D1 is shown in Fig. 10. In this dataset,
the MFCC classifier has better accuracy than the prescreeener
for the sensitivity below 90%. The TS classifier follows the
prescreener performance but having a nearly constant decrease
in sensitivity at a given specificity. The proposed WT classifier
remains the best and outperforms the prescreener considerably.
The WT classifier has 58 false alarms to reach 100% detec-
tion. Thirty-three false alarms come from significant prepara-
tion motions before or after the data collections: 19 from stunt
actors standing up after performing falls; 1 from the designed
type 3 nonfall activity; 1 from the designed type 4 nonfall ac-
tivity; 1 from the designed type 13 nonfall activity; and 3 from
the designed type 14 nonfall activity.

Fig. 10 is the aggregated results of the data collected over five
months from January to May, 2013. Fig. 11 gives the separated
performance of the proposed detector for individual months
separately. It is interesting to note that detection performance in
March and May are particularly worse compared to the others. In
the two months, there were extra human activities in preparing
the experiments, and the stunt actor was standing up faster than
normal after performing the falls. Among the false alarms to
reach 100% sensitivity in Fig. 10, 26 out of 33 from activities
preparing the experiments, and 14 out of 19 from standing up
after falls are from these two months.

In practice, a classifier must be trained beforehand using avail-
able data before putting into practical use. The robust perfor-
mance of the proposed classifier is illustrated in Fig. 12, where
we use the lab dataset DO for training and apply it to the dataset
D1 for testing. The proposed classifier has consistent and com-
parable performance with the cross validation results in Fig. 10,
and this is not the case for the MFCC and TS classifiers.

The falls in DO and D1 are from stunt actors. The apparent
large number of false alarms from the proposed classifier to
reach 100% detection is caused by nonnatural activities of the
stunt actor. Using D2, we are able to assess the performance of
the proposed detector for actual falls from an elderly resident
in a typical home environment. The proposed prescreener first
processes the dataset D2, and the proposed WT or the MFCC



SU et al.: DOPPLER RADAR FALL ACTIVITY DETECTION USING THE WAVELET TRANSFORM 873

—— - —
._.—"__I
g '-‘__'-
./'_ _Ji ]
/_ J_JJ S
A _
_/_'—fJ J
o~
> 1 ]
> 47
= _
w
c
@ i
w
—— WT Classifier |
—==-MFCC Classifier
Prescreener H
=== TS Classifier
04 06 08 1
1-Specificity
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classifier operates on the declared locations from a prescreener
to produce the detection performance. Training uses dataset D1,
where the data from March and May are excluded due to their
abnormal behavior.

Fig. 13 illustrates the results. The MFCC classifier produces
worst results than the prescreener, which is consistent with
the previous observations from Fig. 12. The proposed detector
yields promising results. The number of false alarms is much
less to reach 100% detection, only 16 over 10 days. The pro-
posed WT fall detector is quite resilient to false positives created
by natural daily nonfall activities. Among the 16 false alarms, 11
are from nonhuman activities possibility due to the cat or elec-
tromagnetic interference; 1 from random noise with nobody in
the living room; 2 from the subject adjusting the height of a
chair; 1 from the subject standing up quickly; and 1 from the
subject bending over to pick up an object.

TABLE VII
AREA UNDER THE ROC (AUC), SENSITIVITY, SPECIFICITY, AND ACCURACY
AT THE OPERATING THRESHOLD

DO Dl D2

WT Prescreener AUC 091 0.82 0.71
Sensitivity 92.3% 86.5% 76.9%
Specificity 88.9% 80.8% 76.9%
Accuracy 89.5% 81.9% 77.6%

WT Prescreener and AUC 0.96 0.92 0.82
WT Classifier Sensitivity 97.1% 95.1% 92.3%
Specificity 92.2% 90.7% 81.4%
Accuracy 93.0% 91.6% 83.5%

WT Prescreener and AUC 0.91 0.85 0.75
MFCC Classifier Sensitivity 93.3% 87.8% 92.3%
Specificity 89.7% 89.1% 62.9%
Accuracy 90.3% 88.8% 68.6%

WT Prescreener and AUC 0.76 0.77 0.48
TS Classifier Sensitivity 85.7% 85.4% 69.2%
Specificity 71.4% 72.4% 50.0%
Accuracy 73.8% 75.1% 73.1%

The performance shown in Fig. 13 is for fall detection using
radar in the living room of an elderly resident. We expect it
represents the lower bound performance for fall detection in the
bathroom, since there are more differences between the training
and testing data and the living room has more nonfall activities
that can cause false positives than the bathroom.

In addition to the ROC curves, Table VII tabulates the perfor-
mance metrics of the detectors obtained from the three datasets
at the operating thresholds [33]. The values shown for D1 are
the cross validation results as in Fig. 10. The proposed WT fall
detector (WT-based prescreener and classifier) achieves the best
and consistent performance. The experimental studies corrob-
orate that the time—frequency features extracted from WT are
very effective for fall detection and the proposed fall activity
detector has more robust behavior than the previously proposed
detector using MFCC features.

The TS classifier [27] also uses wavelet processing and its
performance is below expectation. We believe there are two
main reasons. First, the three features of the TS classifier are
derived from backward falls and sit/stand nonfalls. Datasets DO
and D1 have large varieties of falls and nonfalls performed by
professional stunt actors as tabulated in Tables I, IV, and V, and
they have different characteristics than just backward falls and
sit/stand nonfalls. Second, the radar in [27] was placed 40 in
above the floor looking horizontally and our radar was mounted
in the ceiling pointing down. A Doppler radar responds to the
relative motion along the radar-object direction. The received
signals from a ceiling mounted radar and a ground standing
radar behave differently. We believe that the TS classifier from
[27] would work better when the radar is mounted on a wall
looking horizontally.

VII. CONCLUSION

We have developed a reliable detector using Doppler radar
measurements for the detection of human falls. The detector is
based on WT that explores the time—frequency characteristics
of a fall caused by its unique dynamics. The detector has two
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stages; the prescreening stage that uses the WT coefficients at
a given scale to identify the possible occurrence of a fall, and
the classification stage that uses the WT coefficients at several
scales over many successive frames to form a feature vector
for fall versus nonfall classification. The better wavelet func-
tions to reach higher detection accuracy are “rbio3.3,” “db3,”
“sym3,” “rbiol.3,” and “bior2.2” for prescreening and “rbio3.3,”
“coif4,” “db10,” “bior2.6,” “db11” for classification. Evalua-
tions based on the data collected in the lab, in the bathrooms,
and in the senior residence apartment validate the promis-
ing and robust performance of the proposed WT fall activity
detector.
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