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Average in-home gait speed: Investigation of a new metric for mobility
and fall risk assessment of elders
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A B S T R A C T

A study was conducted to assess how a new metric, average in-home gait speed (AIGS), measured using a

low-cost, continuous, environmentally mounted monitoring system, compares to a set of traditional

physical performance instruments used for mobility and fall risk assessment of elderly adults. Sixteen

participants were recruited from a local independent living facility. In addition to having their gait

monitored continuously in their home for an average of eleven months, the participants completed a

monthly clinical assessment consisting of a set of traditional assessment instruments: Habitual Gait

Speed, Timed-Up and Go, Short Physical Performance Battery, Berg Balance Scale – short form, and

Multidirectional Reach Test. A methodology is developed to assess which of these instruments may work

well with the largest subset of older adults, is best suited for detecting changes in an individual over time,

and most reliably captures the true mobility level of an individual. Using the ability of an instrument to

predict how an individual would score on all the instruments as a metric, AIGS performs best, having

better predictive ability than the traditional instruments. AIGS also displays the best agreement between

observed and smoothed values, indicating it has the lowest intra-individual test–retest variability of the

instruments. AIGS, measured continuously, during normal everyday activity, represents a significant

shift in assessment methodology compared to infrequently assessed, traditional physical performance

instruments. Continuous, in-home data may provide a more accurate and precise picture of the physical

function of older adults, leading to improved mobility and fall risk assessment.

� 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Research has shown that the parameters which describe
locomotion are indispensable in the diagnosis of frailty and fall
risk [1]. Additionally, studies have indicated that gait parameters
may be predictive of future falls and adverse events in older adults
[2–5], and that scores on certain mobility tests are good indicators
of fall risk [6,7]. Studies have also shown that interventions to
prevent falls among older adults, such as household modifications
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and exercise routines to improve physical function, could
significantly reduce falls and be highly cost effective [8,9]. Despite
these findings, gait parameters and mobility tests are generally
assessed infrequently, if at all, through observation by a clinician
with a stop watch or using expensive equipment in a physical
performance lab. Furthermore, these sparse, infrequent evalua-
tions may not be representative of a person’s true locomotion
ability [10].

A variety of clinical instruments have been proposed for
assessing mobility in the elderly, including the instruments
completed each month by participants in this study. Each of these
instruments is supported by studies in the literature indicating
their validity, and, in many cases, suggesting their use as fall risk
screening tools. However, the large number of instruments
highlights the fact that no single instrument has proven
completely sufficient. There are a number of contributing factors
to this observation. First, although these instruments are validated
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by one or more studies, many are also the subject of studies
indicating their limitations, or lack sufficient evidence for
conclusive evaluation in regards to fall risk [11]. In all likelihood,
each instrument may work well with a specific subset of elderly
adults (e.g., high functioning, frail, very old, etc.) among whom the
underlying physical characteristics assessed by that instrument
are best suited for discrimination. Therefore, one study may find an
instrument works well whereas another study may find the same
instrument does not, due largely to differences in the studied
population.

Second, physical performance instruments, when used with
frail, elderly populations, are generally subject to significant intra-
individual test–retest variability when test sessions are more than
a day or two apart, independent of actual change in physical
function [12–14]. This variability limits their usefulness for
detecting changes in an individual over time. Relatively large
minimum detectable change (MDC) values that have been
reported for these instruments with frail, elderly populations,
such as 2.9 for Short Physical Performance Battery (SPPB), 8 for
Berg Balance Scale (BBS), and approximately 30% for Timed-Up and
Go (TUG), provide further evidence of this issue [12,15,16].

A system that monitors gait parameters continuously, during
normal everyday activity, may offer significant benefits for
mobility and fall risk assessment. Based on the preferences of
older adults, an ideal system would not use wearable devices, and
would not require active involvement from the user [17]. In [18],
researchers developed a system that uses an array of passive
infrared motion sensors mounted on the ceiling in a hallway to
measure gait speed in home environments. Using data from a one
month period centered on a participant’s first annual physical
evaluation, researchers found statistically significant associations
between in-home gait speed and a variety of mobility assessments,
including the motor section of the Unified Parkinson’s Disease
Rating Scale, stopwatch timed gait speed, and the Tinetti balance
scale [10].

More recently, a low-cost, environmentally mounted, automat-
ed monitoring system based on the Microsoft Kinect has been
developed that continuously monitors and reports the gait of
residents, in their homes, during normal everyday activity [19]. No
special procedures or movements are required of the residents.
Privacy of the people living with the monitoring system is
protected by only using the depth imagery from the Kinect (see
Fig. 1B). As compared to traditional performance instruments
assessed infrequently, this continuous in-home data may provide a
more accurate, precise, and reliable picture of physical function.
Fig. 1. Kinect-based in-home gait system. (A) Photo of system installed in a typical apart

placed in the cabinet above the refrigerator. (B) Sample raw data and extracted foregrou

dimensional models for the three selected frames created using depth data and extrac
The purpose of this study was to assess how a new metric,
average in-home gait speed (AIGS), derived from continuous in-
home gait data compares to a set of traditional physical
performance instruments used for mobility and fall risk assess-
ment. A methodology was developed to assess which instrument
may work well with the largest subset of older adults, is best suited
for detecting changes in an individual over time, and most reliably
captures the true mobility level of an individual.

2. Design and methods

2.1. Subjects

With approval from the Institutional Review Board at the
University of Missouri – Columbia, participants were recruited
from a local independent living facility with the goal of
maintaining continuous monitoring in 10 apartments. To meet
this goal, monitoring systems were installed in 15 apartments for
time periods ranging from 2 to 22 months. Three of the apartments
had two residents, yielding a total of 18 study participants.
However, due to very similar physical characteristics, separate in-
home gait estimates could not be made for the residents of one
apartment, necessitating their removal. Thus, data from 16 parti-
cipants (7 male, 9 female) residing in 14 apartments were used for
analysis. The average monitoring duration was approximately
11 months. Summary statistics are given in Table 1. Informed
consent was obtained from all subjects.

2.2. Procedure

2.2.1. Average in-home gait speed

Kinect-based gait measurement systems were installed in the
main living area of each apartment, as shown in Fig. 1A. Walking
segments of four feet or greater occurring in view of the systems
are automatically identified, segmented, and analyzed for gait
speed, height of the individual walking, stride time, and stride
length, among other attributes [19]. Using these data, a probabi-
listic model representing each resident’s gait is created, and then
updated over time using data from the prior eight weeks
[19]. Possible limitations of the Kinect-based gait system, such
as use in multi-resident homes, and of the Kinect sensor itself are
discussed in [19].

The average in-home gait speed (AIGS) of a resident for a given
day is computed as a weighted average of gait speed from all walks
identified in their apartment during the prior seven days. The
ment. The Kinect sensor is placed on small shelf above the front door. A computer is

nd for three selected frames during a walking sequence in an apartment. (C) Three-

ted foregrounds.



Table 1
Summary statistics.

Mean � Std. Dev. [Range] (N)a

Age (years) 85.8 � 7.95 [67–98] (16)

Average in-home gait speed (cm/s) 51.0 � 12.8 [29.4–76.4] (159)

Timed-up-and-go (s) 19.4 � 7.94 [9.47–42.6] (159)

Habitual Gait Speed (cm/s) 65.4 � 18.7 [23.6–105] (159)

Sideways Reach (in) 7.66 � 2.97 [0.83–15.0] (159)

Forward Reach (in) 9.56 � 2.94 [1.17–17.7] (159)

Berg Balance Scale – short form (score, out of 28) 22.1 � 3.55 [12–28] (159)

Short Physical Performance Battery (score, out of 12) 7.69 � 2.04 [3–12] (159)

a From 16 participants, 159 complete monthly assessments and corresponding AIGS measurements were collected and used for analysis.
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weight each walk receives in the average is determined by its
likelihood given the resident model [19]. The number of walks
used to compute an AIGS measurement depends on a variety of
factors, including apartment layout, apartment clutter, system
positioning, and resident behavior. Typically, 4–35 walks per day
were identified with likelihood sufficient to conclude they were
from a resident, not from a visitor or staff member. Therefore, each
AIGS measurement was based on between 25 and 250 walks that
received a meaningful weight in the average. Following installation
and an initial setup procedure, which usually takes less than one
hour, the process of identifying walking segments, extracting gait
parameters, creating and/or updating resident models, and
generating daily AIGS estimates is completely automated.

2.2.2. Monthly assessments

Participants completed a monthly clinical assessment consist-
ing of a set of traditional instruments that have been studied and
used to assess mobility and fall risk in the elderly: Habitual Gait
Speed (HGS) [1,4,20–22], Timed-Up and Go (TUG) [7,23], Short
Physical Performance Battery (SPPB) [24,25], Multidirectional
Reach Test (MDRT) [26,27], and Berg Balance Scale – short form
(BBS-SF) [28,29]. The monthly assessments were administered by
research assistants who have periodic training by a physical
therapist for accuracy in conducting them. Video from a subsample
of the monthly assessments was also reviewed to confirm
accuracy. Most months all participants completed the entire
assessment. However, participant availability and preference
prevented collection of all instruments from all participants every
month.

HGS was assessed using a ten foot walking path and a stop
watch. The walk was repeated twice and the average time of the
two walks was recorded as the final score. TUG was assessed using
an arm chair, a ten foot walking path, and a stop watch. The time
required for the subject to complete the test was recorded as the
final score. SPPB standard protocol, which consists of three
separate sections: gait speed, repeated chair stands, and static
and dynamic balance; was assessed using a ten foot walking path,
an arm chair, and a stop watch. For the gait speed section, the
fastest of the two ten foot walks completed for HGS was used. All
three sections of the SPPB were scored on a scale from 0 to 4 using a
standardized scoring scale, and the sum of the scores was recorded
as the final score. BBS-SF, which consists of seven separate balance
tests, half of the 14 comprising the full Berg Balance Scale (BBS),
was assessed using a stop watch. The sum of the scores was
recorded as the final score.

MDRT, as originally described, consists of four separate
assessments: forward reach (also known as Functional Reach),
right and left sideways reach, and backwards reach; with each
reach assessed as the average of three trails. No method is given for
combining the reach scores into a single measure, as each reach
was independently validated. As part of the monthly assessments
administered for this study, participants completed the forward
reach (FR), and one sideways reach (SR) of their preference.
2.2.3. Evaluation methodology

Evaluation consisted of two steps. First, each instrument was
assessed on how well a score on that instrument could predict the
scores an individual would receive on all of the instruments. The
assumption is that the score on each instrument is dependent on a
set of underlying physical characteristics that influence mobility in
elderly adults, as indicated by studies in the literature. Thus, the
instrument that is able to best predict (on average) how an
individual will score on all the instruments likely best captures the
physical characteristics underlying all the instruments. As a result,
one would expect the instrument with the best prediction ability to
work well with the largest subset of elderly adults, and to most
reliably capture the true mobility level of an individual.

As the instruments are subject to test–retest variability, the
values observed during the monthly assessments reflect both the
true, intrinsic score the individual would receive, as well as this
test–retest variability inherent in the instrument. To better
approximate the true score of an individual, the observed scores
the individual receives on an instrument are smoothed, temporal-
ly, using a moving average. In this case, a centered moving average
with window size 5. To illustrate, if a participant had an observed
TUG time of 18 s for the month of March, and observed TUG times
of 20, 25, 22, and 21 s for the months of January, February, April,
and May, respectively. The estimated true TUG time for the
individual for the month of March, obtained after smoothing,
would be 21.2 s. For this analysis, the accuracy of predicted scores
was measured against the estimated true scores obtained after
smoothing.

Second, to evaluate the ability of each instrument to detect
changes in an individual over time, each instrument was assessed
on how well the observed and smoothed values of the instrument
agreed. A large difference between the observed and smoothed
values of an instrument implies large variation from one
measurement to the next that is outside of any long term trend.
Frequent, large variations are indicative of high test–retest
variability leading to large MDC, and, thus, limited usefulness in
detecting changes in an individual over time. Of course, an
instrument that always produced the same value for an individual
would have the lowest test–retest variability. However, such an
instrument would be unable to accurately predict how an
individual would score on other instruments, as it would not be
capturing an actual measure of mobility. Thus, assessment of both
prediction accuracy on all the instruments, and intra-individual
test–retest variation, results in a multiple criteria evaluation that
addresses these potential tradeoffs.

To allow prediction of one instrument given a score on another,
a simple neural network model was used to learn a mapping
between instruments. This neural network model was chosen over
other methods, such as standard linear regression, as it allows
simple non-linear relationships to be captured. The model uses a
single hidden neuron with a non-linear activation function, and a
single output neuron with a linear activation function. The
simplicity of the model, with only four trainable parameters
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(the input and bias weights of each neuron), increases the chance
of good generalization, while maintaining the flexibility needed to
approximate the simple, yet crucial, non-linear relationships that
exist between the instruments. The model was trained using the
Covariance Matrix Adaptive Evolutionary Strategies optimization
algorithm, with the best result of 20 randomly initialized trials
being selected. The input data were first normalized by subtracting
the mean and dividing by the standard deviation, and the objective
function to be minimized was the squared error on the training
data. Example learned mappings are shown in Fig. 2.

After learning a mapping from one instrument to another,
agreement of the predicted scores with the smoothed scores of an
instrument was assessed using three metrics. The first was the
intra-class correlation coefficient (ICC) (two-way, single measure,
absolute agreement). ICC is a scaled metric that assesses the
absolute agreement between two sets of measurements, with a
value of 1.0 indicating perfect agreement. The second metric was
root mean square deviation (RMSD). RMSD conveys the magnitude
of the difference between values, as it is not scaled. Thus, to allow
averaging across instruments, RMSD was normalized by dividing
by the standard deviation of the observed scores of the instrument,
to obtain normalized RMSD (NRMSD).
Fig. 2. Example non-linear mappings lear
3. Results

From 16 participants, 159 complete monthly assessments were collected, along

with their AIGS computed for the days the assessments were administered. (An

additional 13 partially completed monthly assessments were not included.) Table 2

shows the agreement, measured using ICC, RMSD, and NRMSD, of the predicted

scores with the smoothed scores of the instruments.

The average agreement of the predicted scores with the smoothed scores of

only the traditional instruments shows AIGS compares favorably, ranking a

close second to TUG on both ICC and NRMSD. This is a compelling finding, as

the average agreement with the traditional instruments alone is inherently

biased in their favor. This is due to the fact that the mapping of the traditional

instruments to their own smoothed values is included in the average, which is

not the case for AIGS. Furthermore, AIGS is the best predictor of smoothed

TUG after observed TUG, and the best predictor of smoothed SR after observed

SR. If AIGS is included alongside the traditional instruments in the calculation

of the average, AIGS becomes the best predictor based on both ICC and

NRMSD.

As shown in Table 2 (see the diagonal entries, shaded gray), the observed and

smoothed values of AIGS show the best agreement of all the instruments, based on

both ICC and NRMSD. The high level of agreement indicates that AIGS displays

little intra-individual test–retest variability, clearly less than that of the

traditional instruments. This is somewhat expected, however, as a single AIGS

measurement is based on tens or hundreds of measurements made during normal

everyday activity, while the traditional instruments are effectively a snapshot

based on one, or a small number of, measurements made during an explicit

performance evaluation.
ned from one instrument to another.



Table 2
Agreement of predicted values with smoothed values after non-linear mapping (N = 159, 16 subjects).

ICC
(Highe r is 

be�er)

TARGET INSTRUMENT (S MOOTHED ) AVERAGE W /O 
AIGS INCLUDED a

AVERAGE WITH
AIGS INCLUDED bAIGS TUG HGS SR FR BBS -SF SP PB

M
AP

PE
D 

IN
ST

RU
M

EN
T

AIGS 0.9 93 0.9 49 0.8 18 0.8 57 0.7 18 0.6 90 0.7 33 0.7 94 0.823

TUG 0.7 95 0.9 69 0.8 80 0.8 19 0.7 50 0.7 10 0.7 71 0.816 0.8 13

HGS 0.6 62 0.8 55 0.9 38 0.7 48 0.7 28 0.6 59 0.7 11 0.7 73 0.7 57

SR 0.7 44 0.7 99 0.7 34 0.8 90 0.7 69 0.6 71 0.5 98 0.7 43 0.7 43

FR 0.5 38 0.7 03 0.6 80 0.7 57 0.8 89 0.7 28 0.5 59 0.7 19 0.6 94

BBS-SF 0.5 39 0.5 50 0.5 55 0.5 81 0.6 43 0.8 34 0.6 73 0.6 39 0.6 25

SPPB 0.6 13 0.6 52 0.6 38 0.5 62 0.5 16 0.7 34 0.8 99 0.6 67 0.6 59

TARGET INSTRUMENT (S MOOTHED )
AVERAGE W/O 

AIGS INCLUDED a

(NRMSD)

AVERAGE WITH
AIGS INCLUDED b

(NRMSD)

RMSD

NRM SD AIGS

(cm/s ec)

TUG

(se c)

HGS

(cm/s ec)

SR

(in)

FR

(in)

BBS-SF

(score)

SPPB

(score)(Lower is 
be�er)

M
AP

PE
D 

IN
ST

RU
M

EN
T

AIGS 1.46
0.11

2.41
0.29

9.76
0.50

1.30
0.44

1.68
0.57

2.06
0.56

1.21
0.54 0.4 84 0.431

TUG 7.39
0.57

1.91
0.23

8.17
0.42

1.44
0.48

1.60
0.55

2.01
0.55

1.14
0.51 0.456 0.4 73

HGS 9.00
0.70

3.90
0.47

6.05
0.31

1.64
0.55

1.66
0.56

2.14
0.58

1.25
0.56 0.5 06 0.5 33

SR 8.10
0.63

4.48
0.53

11.4
0.59

1.16
0.39

1.55
0.53

2.11
0.58

1.42
0.63 0.5 41 0.5 54

FR 10.1
0.78

5.24
0.63

12.3
0.63

1.62
0.54

1.13
0.39

1.96
0.53

1.46
0.65 0.5 62 0.5 94

BBS-SF 10.1
0.78

6.09
0.73

13.8
0.71

1.99
0.67

1.84
0.63

1.60
0.44

1.31
0.5 9 0.6 26 0.6 48

SPPB 9.47
0.73

5.56
0.66

12.8
0.66

2.02
0.68

2.05
0.70

1.94
0.53

0.80
0.36 0.5 98 0.6 17

a Average only includes columns TUG through SPPB.
b Average includes all columns, AIGS through SPPB.
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4. Discussion

Results indicate that AIGS is better able to predict how an
individual would score on all the instruments included in this
study than any of the traditional instruments, and that the
observed and smoothed values of AIGS show better agreement
than those of any of the traditional instruments. This suggests that
AIGS may work with the largest subset of elderly adults, be best
suited for detecting changes in an individual over time, and most
reliably capture the true mobility level of an individual. In addition,
AIGS can be measured continuously, and inexpensively, using a
system that requires no active involvement of the subject. The
system is also quite unobtrusive, taking up no floor space as
currently installed, and using a computer that is the size of a typical
paperback book.

Compared to traditional physical performance instruments,
AIGS represents a significant shift in assessment methodology. This
shift is illustrated by the large difference between the average AIGS
and average HGS observed in this study, namely 51.0 cm/s and
65.4 cm/s, respectively. Traditional instruments are explicit
evaluation snapshots, generally with specific, fixed protocols,
conducted in clinical settings. On the other hand, AIGS is a more
continuous measure assessed in an individual’s home, during their
normal everyday activity.

A large and growing body of research has shown the importance
of measuring gait [1–5]. Despite this, gait is generally measured
infrequently, either in a clinician’s office or a performance
laboratory. The results of this study suggest that measurement
of gait during an individual’s normal, everyday activity in their
own home could provide clinicians with a more reliable assess-
ment of mobility and fall risk on a continuous basis. With detection
of increasing fall risk using AIGS, clinicians can recommend
strength training and other therapeutic interventions to reduce the
risk of falls. The results also indicate AIGS could potentially be used
across a broad range of frailty levels, with the only requirement
being that an individual walks regularly while in their home. A
shift to continuous, daily measurement may offer significant
benefits for purposes beyond more reliable mobility and fall risk
assessment. For example, early detection of health changes [30]
could allow more targeted use of clinical interventions when they
may be most effective. Furthermore, such an automated system
could provide an unobtrusive, low cost, quantifiable method for
evaluating the impact of interventions over time.
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The clear limitation of this initial study is the sample size. While
159 monthly clinical assessments and thousands of in-home walks
were used in the analysis, they were collected from 16 individuals
residing in the same independent living facility. Although some of
the individuals showed significant change over the monitoring
period, others did not; thus, the effective size of the studied sample
lies between 16 and 159. Given the encouraging results of this
initial investigation, a larger study could provide additional
confirmation of the findings, as well as a better understanding
of the relationship between AIGS, mobility level, and fall risk
among older adults.
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