
  

 

Abstract— The use of in-home and mobile sensing is likely to 

be a key component of future care and has recently been studied 

by many research groups world-wide. Researchers have shown 

that embedded sensors can be used for health assessment such 

as early illness detection and the management of chronic health 

conditions. However, research collaboration and data sharing 

have been hampered by disparate sets of sensors and data 

collection methods. To date, there have been no studies to 

investigate common measures that can be used across multiple 

sites with different types of sensors, which would facilitate large 

scale studies and reuse of existing datasets. In this paper, we 

propose a framework for harmonizing heterogeneous sensor 

data through an intermediate layer, the Conceptual Sensor, 

which maps physical measures to clinical space. Examples are 

included for sleep quality and ambulatory physical function. 

I. INTRODUCTION 

In-home sensors hold enormous potential for identifying 
early changes in health, but scaling the research to make the 
critical link between sensor data and early health assessment 
will require a coordinated effort among multiple research 
groups. In this paper, we offer a framework for harmonizing 
heterogeneous sensor data across multiple sites to support 
embedded health assessment, that is, the assessment of health 
problems or health changes through opportunistic sensing 
mounted in the home or through wearable or mobile devices. 
Identifying and assessing health problems while they are 
nascent or even pre-symptomatic can provide a window of 
opportunity for interventions that can alleviate problems 
before they become catastrophic. However, there is a need 
for scaled up research studies to test the approach and better 
understand how to utilize embedded sensor data. 

To date, there have been no studies to investigate 
common measures that can be used across multiple sites with 
potentially different types of sensors. One approach would 
be to standardize the sensors used, but that could eliminate 
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the use of existing datasets, new, improved sensors as they 
become available, and invention of new technologies. 
Instead, we propose an intermediate layer between the 
physical sensors and the health and wellbeing assessments 
and outcomes that will harmonize the sensor data by 
providing common measures, supporting the sharing of 
datasets, and facilitating further study of the efficacy of 
embedded health assessment. 

Joint standardization efforts in healthcare between the 
private and public sectors are underway in many areas 
(http://www.hitsp.org). Standards such as HL7 
(http://www.hl7.org) provide a common framework for 
interoperability and communication between disparate 
systems, both on the individual sensor level, as well as how 
data and summaries are transmitted to electronic medical 
records.  On the sensor and device level, the IEEE 11073™ 
is a family of standards for medical device interoperability. 
Seven parts were initially adopted on October 1, 2008 [1]. 
Part 10471, Independent Living Activity Hub, establishes a 
normative definition of communication between personal 
telehealth independent living activity hub devices and 
compute engines (e.g., cell phones, personal computers, 
personal health appliances, set-top boxes) in a manner that 
enables plug-and-play interoperability [2]. The Continuity of 
Care Document (CCD) is an XML-based markup standard 
intended to specify the encoding, structure and semantics of 
a patient summary clinical document for exchange. The 
Continuity of Care Record (CCR) is a core dataset of the 
most relevant clinical information about a patient's 
healthcare [3] that provides a format for forwarding the data 
to another entity to support the continuity of care.  

In a similar way, we assert that harmonization among 
disparate sensor types with a link to the clinically relevant 
measures will propel collaboration and data sharing for large 
scale studies. In this paper, we first discuss barriers that 
discourage a common set of sensors for all and then present 
our proposed intermediate, conceptual sensor layer. 
Examples are provided for sleep quality and ambulatory 
physical function. We conclude with a discussion. 

II.   BARRIERS TO A COMMON SET OF SENSORS 

In-home and mobile sensing has been studied by many 
research groups world-wide for assessing health, safety, and 
wellbeing. However, each group has a different set of 
sensors, in part because they focus on different research 
questions or different target subjects. For example, consider 
the early detection of physical health problems that may 
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require different approaches from those focused on cognitive 
health problems or mental health problems. All of these 
issues affect an elderly population but may require different 
types of assessment. Physical function may be assessed by 
capturing overall activity patterns (sedentary vs. active), 
walking gait patterns, sit to stand motions, sleep patterns, 
pulse and respiration [4]. Cognitive health assessment may 
use walking gait but also include assessment of activities of 
daily living (ADLs) [5], and interactive cognitive games on a 
computer [6]. Mental health assessment may use overall 
activity and sleep patterns as well as socialization via a 
phone or time out of the home [7]. Although there is some 
overlap, each condition may require a different optimal suite 
of sensors or different data processing methods. 

Another target use of embedded health assessment is the 
management of chronic health problems, such as diabetes, 
arthritis, heart disease, or Parkinson’s disease. The 
Parkinson’s assessment might use computer usage as a proxy 
for the finger tapping test, while this might have little value 
for monitoring other chronic health problems. Researchers 
focusing on fall risk assessment need to consider parameters 
such as walking speed, stride time, and stride length, while 
this may not be important for someone with depression. 

Other uses include safety and fall detection. There have 
been many sensing modalities proposed for fall detection, 
including wearable accelerometers [8], single cameras, 
multiple cameras [9], depth cameras [10], radar [11], and 
acoustic arrays [12]. Some work better than others, 
depending on the context of use. For example, wearable 
accelerometers do not work well if not worn consistently and 
recharged as necessary, which presents challenges for elderly 
users. Vision-based sensors work well for some 
environments but have failures in cluttered spaces with 
occlusions. Radar might not work as well in the open space 
but may be the best choice in tight spaces such as bathrooms 
because radar can penetrate structural elements. Each 
sensing modality has an uncertainty associated with it which 
can be measured against a gold standard. However, the 
uncertainty is also affected by the context in which the 
sensor is used. 

Thus, there are a number of reasons why a fixed, 
common set of sensors is not practical: due to different 
research focus areas, different health conditions, different 
target users, and different environments in which the sensors 
are used. A fixed set of sensors also limits the possibility of 
using new sensors that might be available in the future and 
offer better performance. As a result, organizing large scale 
studies on embedded health assessment provides challenges. 
The heterogeneity of sensors and data types represents 
challenges to collaborative studies across organizations as 
well as to the development of generalizable algorithms. We, 
therefore, propose an intermediate layer, the Conceptual 
Sensor, to address these challenges. 

III. THE CONCEPTUAL SENSOR LAYER 

  Our view of the conceptual sensor (CS) is an abstraction 
of the physical sensors that provides an intermediate 
connection to health and wellbeing assessments. Fig. 1 
illustrates this mapping. From the physical sensors, the 

monitored metrics are translated into an intermediate layer 
that harmonizes the data into a set of common measures with 
known uncertainty for specific contexts of use. This 
approach facilitates data sharing across multiple sites and 
different sets of sensors. This set of common measures, the 
CS layer, can be used for large collaborative studies to 
investigate embedded health assessment. The uncertainty 
associated with each conceptual sensor, given a context of 
use, provides a characterization of this intermediate layer 
that allows generalization for embedded health assessment. 

Other fields have benefitted from similar efforts, e.g., the 
logical sensor proposed in robotics [13]. However, there is 
an important distinction. Whereas the logical sensor is a 
mapping from physical measure to physical space, the 
proposed conceptual sensor is a mapping from physical 
measure to clinical space. Different CS data types must be 
supported, including numeric, qualitative or linguistic, 
binary, statistical, and state-driven models. A key motivator 
for logical sensors was to achieve dynamic reconfiguration to 
support fault tolerance. Although this will be useful for 
embedded health assessment, it is not our primary motivator. 
Our main goal is to share datasets and facilitate the medical 
efficacy of embedded health assessment.  

Table I includes an example list of possible physical 
sensors which can be embedded to capture behavior and 
health. Table II displays categories of health and wellbeing 
that the clinicians on our research team (with expertise in 
gerontology) brainstormed and developed as clinically 
relevant; the common clinical uses are listed. This 
framework is similar to others proposed by gerontologists 
who are familiar with the seminal work of Lawton [14]. The 
harmonized measures of the CS can be hand-crafted. 
Uncertainty can be measured against a gold standard 
measurement, e.g., comparing walking speed from the Kinect 
depth images to a marker-based motion capture system or 
pulse rate from a bed sensor to a reference signal from a 
finger sensor. However, learning methods can also be used to 
produce harmonized measures and uncertainty, given a set of 
physical sensors and a usage context.  

No single computational procedure or learning algorithm 
is expected to be able to address all CS problems due to the 
great diversity of the physical sensors and their respective 
uncertainty, such as functional, probabilistic, linguistic and 
state-based models. Several computational approaches are 
applicable, including clustering (unsupervised learning), 
multiple instance learning, fuzzy logic rule systems, learning 
fuzzy measures for fuzzy integrals, and learning human 
behavior using a group of learning automata, similar to a 
mixture of experts. 
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Fig. 1. The Conceptual Sensor is a mapping from physical measure to 

clinical space. 
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For example, clustering techniques can be used to 
explore the structure of the physical sensor data and its 
possible mappings to the CS space. Possible applications 
include (1) using cluster validity algorithms [15] for 
discovering which sets of monitored metrics to use and how 
many CS states exist; (2) analyzing intra- and inter-cluster 
variance with respect to state resolution (uncertainty) to 
determine CS precision; and (3) comparing partitions for 
temporal CS behavior analysis. In addition, clustering can be 
used to validate a set of hand-crafted CS’s. For example, 
assume we want to explore a state-based model for a sleep 
quality CS by clustering the available data for a given time 
period produced by hydraulic and radar bed sensors. We first 
apply cluster validity algorithms to determine the number of 
clusters, C. Well-separated clusters might suggest that the 
sleep quality CS should have C states. Then, by comparing 
the clustering structures obtained for different time periods 
using partition comparison algorithms [16], we can assess 
the stability of the sensor and its time behavior. Hence, 
clustering as a means of unsupervised data analysis can have 
multiple roles from CS structure discovery to validating the 
quality of hand-crafted CSs according to the underlying 
patterns in physical sensor data. 

IV. CONCEPTUAL SENSOR EXAMPLES 

For illustration, we provide two examples. Fig. 2 shows a 
sleep quality example, using various bed and motion sensors. 
Fig. 3 shows an example for ambulatory physical function; 
gait and other movement parameters can be captured with a 
variety of sensing systems. In both examples, a set of 
common clinical outcomes is used for health and wellbeing 
assessment. Again, clinicians on the research team 
brainstormed the clinical  outcome measures and health and 
wellbeing clinical examples. 

Consider the example given in Fig. 3. Walking speed has 
been measured with in-home sensors using a PIR array [17], 
Doppler radar [18], and Kinect depth images [19]. The first 
step in the development of a conceptual sensor is to define 
the phenomenon to be measured. In the case of a walking 
person, this may be the velocity of the center of mass of the 
walking individual derived from the trajectory observed over 
time. Once defined, lab experiments can be used to measure 
walking speed and possibly the motion direction with each 
sensor modality using models of the sensors.  The resulting 
walking speed estimates can then be compared to a “gold 
standard”, marker-based Vicon motion capture system. Since 
the Vicon system measures the position of each marker, it is 
necessary to build a model that estimates the center of mass 
velocity. This velocity over time represents the output of a 
conceptual sensor.   

In addition to the measurement of the quantity of interest, 
it is necessary to capture the uncertainties associated with the 
measurements. Empirical results may show that, for 
unconstrained walking paths, the PIR array will have an 
uncertainty of ϵp, radar an uncertainty of ϵr, and the Kinect an 
uncertainty of ϵk. The likely uncertainties for unconstrained 
walking paths are ϵp > ϵr > ϵk.  In part, this is due to the PIR 
array and radar systems capturing the velocity component 
along one axis only (i.e., aligned with the PIR array or 

directly towards or away from the radar). If the sensors are 
placed in a hallway that constrains the walking path, the 
uncertainties for the PIR array and radar will be different. It 

 

TABLE I.  PHYSICAL SENSORS 

Category Sensor  

Motion sensing 

Room sensing 

Spot sensing (e.g., shower, frig) 

PIR array 

Magnetic door sensors 

Location tracking (Ubisense) 

Single-camera 

Multi-camera 

Kinect depth camera 

Radar 

Ultrasound 

Acoustic sensing 

Wearable accelerometers 

Smartphone mobile device 

Bed and chair sensing 

Binary mat 

Load cells under bed/chair 

Pneumatic transducer 

Hydraulic transducer 

Radar on ceiling 

Ultrasound on ceiling 

Microphone 

Accelerometer on the wrist 

Medication compliance 

Med box lid sensing 

Mems caps on pill bottles 

Vision to capture med use 

Vital signs 

Weight scale 

Blood pressure 

Pulse oxygen 

Glucometer 

Peak flow meter 

Computer use 
Interactive cognitive games 

Key strokes/mouse usage statistics 

Other sensing 

Statistics on phone usage 

Audio phone signal (emotions) 

Stove temperature 

Water sensing 

Electric power/signal sensing 

TABLE II.  HEALTH AND WELLBEING 

Category Clinical Use 

Early detection  

and prevention of illnesses 

Depression 

Memory loss 

Gait dysfunction 

Infections 

Sleep disturbances 

Cancer 

Malnutrition 

Maintaining function 

Physical activity 

Memory 

Low Anxiety/Stress 

Social network 

Fall risk 

Medication adherence 

Managing chronic conditions 

Heart disease 

Hypertension 

Vascular insufficiency 

Parkinson’s disease 

Sleep apnea 

Diabetes 

Arthritis 

Prostatic hypertrophy 

Dementia 
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is important to understand the measurement uncertainties 
when using the sensor data for embedded health assessment. 
Depending on the uncertainty value, a logged history of 
walking speed might indicate a real trend of the monitored 
individual as a result of a health change. Or it could be a 
natural fluctuation due to the sensing modality. 

V.   DISCUSSION 

The proposed approach represents the first step to 

building a flexible and powerful framework for harmonizing, 

combining and fusing diverse data sources. The problem of 

harmonizing data is becoming increasingly important with 

the availability of big data and with the need to analyze 

them.  In fact, data harmonization is one of the central issues 

challenging the emerging data science fields. The novel 

aspect in the sensor data representation is the need for 

relatively precise temporal synchrony and spatial 

registration.  The conceptual sensor space will enable both. It 

is also important to note that the CS representation is just a 

first necessary step in building a framework for real time 

assessment, inference and intervention.  
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Fig. 3. A Conceptual Sensor example used for ambulatory physical function 
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Fig. 2. A Conceptual Sensor example used for sleep quality 
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