
  

 

Abstract— In this paper, we describe a feasibility study in 
which the Microsoft Kinect is used for a game-based exercise to 
strengthen posterior chain muscles which are often weak in 
those at high risk of anterior cruciate ligament (ACL) injury. In 
the game, subjects perform a single posterior chain 
strengthening exercise. The game uses a side-scrolling video 
display driven by a hip abduction exercise while a player lies 
down on the floor. Leg lifts beyond a predetermined angle 
trigger the jumping action of an animated tiger. We describe the 
scene and game control, which uses depth images from the 
Kinect. Although Kinect-based skeletal data are used for many 
games, the skeletal model does not yield good estimates for 
positions on the floor. Our proposed system uses multiple leg 
angle estimators for different angle regions to recognize the 
player lying down and capture the angle between two legs. We 
conducted an experiment that validates our system with 
marker-based Vicon ground truth data. We also present results 
of an end-to-end test using the game, showing feasibility.  

I. INTRODUCTION 

Anterior cruciate ligament (ACL) injury incidence rates 
have been estimated as high as 38,000 in girls and women 
alone [1]. This is linked to an approximated annual cost of 
650 million dollars for their medical management [1]. Female 
athletes have been identified as having a 4-6x increased risk 
of an ACL injury over their male counterparts in similar 
cutting sports, such as basketball and soccer [2]. The majority 
of the ACL injuries, 60% to 80%, are non-contact in nature 
with two common moves, cutting and landing [3]. Previous 
work by Hewett et al., has identified four neuromuscular 
imbalances in at risk individuals [4]. These include ligament 
dominance, quadriceps dominance, leg dominance and trunk 
dominance. During single leg landing actions, a knee 
abduction moment with increased trunk displacement and 
limited knee flexion has been identified as a biomechanical 
stressor for an individual’s ACL. Hewett et al. found that 
focusing on posterior chain strengthening of muscle groups 
such as the gluteus maximus, gluteus medius, gluteus 
minimus and hamstrings reduces the load to the ACL by 
controlling frontal plane motion and improving 
neuromuscular control [4]. 
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The purpose of this study was to determine feasibility of 
the Kinect in assisting subjects to perform a single posterior 
chain strengthening exercise. This study includes one specific 
exercise due to its initial stage. Proven ACL prevention 
programs include multiple exercises to reduce injury risk [4]. 

To promote posterior chain lower extremity 
strengthening and improved biomechanical control of the 
femur acting on the knee joint, we initially target the gluteus 
medius muscle. The gluteus medius originates from the 
external surface of the ilium and inserts on the oblique ridge 
on the lateral surface of the greater trochanter of the femur 
[5]. It is a primary abductor of the hip joint, with the anterior 
fibers medially rotating the hip joint and posterior fibers 
laterally rotating and extending the hip [5]. 

Several studies have examined the effectiveness of 
various exercises in isolating the gluteus medius [6][7]. They 
concluded, while using surface EMG, during a maximum 
voluntary isometric contraction, that the side-lying hip 
abduction exercise was superior in targeting the gluteus 
medius out of 12 common strengthening exercises [7]. 
Although multiple posterior chain muscles and exercises have 
been proposed to improve neuromuscular control of the lower 
extremity [4], we chose the side-lying hip abduction raise due 
to its specificity in targeting the gluteus medius and to test 
usability with the Kinect. Potential strength training protocols 
for a user are proposed based on previous foundations of 
overload training and desired hypertrophy of the muscle [8]. 
A patient would perform the activity at 8-12 reps at 2-3 sets 
with a 1-2 minute rest period, up to 3x/week [8]. 
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Fig. 1. (a) Game Hardware: TV + Kinect for Xbox One + PC (not shown); 
(b) Game Scene; (c) Game Input Control Parameter 
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In previous work, we presented a Kinect-based screening 
tool for detecting subjects at risk of ACL injury [9]. Here, we 
describe the “Happy Tiger” intervention, which is a 
Kinect-based side-scrolling video game developed in the 
Unity3D game engine [10]. The object is to progress by 
collecting gold coins. In the game, the player character (a 
tiger) keeps running forward and jumps onto column arrays to 
collect coins. If the player misses the columns, it falls to the 
ground. The jumping action is triggered by the side-lying hip 
abduction exercise. The Kinect is placed 1m to 1.5m above 
the floor and tilted down so that the floor is visible. The user 
lies on one side as shown in Fig. 1, at 2m to 3.5m from the 
Kinect. The jump is controlled by the angle θ between the two 
legs, as the user tightens muscles in the front of the top thigh 
to lift the leg. If the upper leg is lifted such that θ exceeds the 
threshold angle θth (θ(t)>θth, θ(t-1)<θth), the tiger is triggered 
to jump once. We set θth to be 30° as a default; it can be 
changed by the user. Fig. 1 shows the game scene. In Section 
II, we describe the game methodology. We present a method 
for estimating the leg angle in the side-lying position using 
the depth images, due to the limitation of using skeletal data 
in reclining positions. Section III includes experimental 
results. We conclude in Section IV. 

II. METHODOLOGY 

A. Framework of Game Control 
The biggest challenge in this game project is to design a 

fast, accurate and robust game control input system to 
estimate the angle between two legs when a player is 
performing the side-lying hip abduction exercise. The control 
input of a game is typically small. For example, a joystick 
only sends two float coordinate numbers and a key or throttle 
sends a single logic or numerical signal. When using the 
Kinect skeleton model as the control input, the data is only a 
structure of 25 arrays of 3D joint coordinates. Because the 
Kinect skeleton model is not accurate for a player lying down, 
in our game, the input is a 512×424 16-bit depth image stream 
at 30 frames per second (30 FPS). The image has 217,088 
pixels in each frame. Such a large data size requires longer 
time and more space in processing to get the leg angle as the 
game control parameter. However, the game engine takes up 
much of the system resources, so that the time for leg angle 
estimation is extremely short. Moreover, to make the game 
work, as a game control approach, our angle estimator should 
not only estimate leg angle accurately but also cooperate with 
the game engine and trigger the jumping action during the 
game. The basic steps to estimate the leg angle θ are: 

 Preprocessing: Given a raw depth image I, detect the 
ground plane f and extract the image of the target 
player It from the background. 

 Leg Angle Estimation: Use one of the three leg angle 
estimators {f1,f2,f3} to get the results 
θ∈{θ1,θ2,θ3}={f1(It),f2(It),f3(It)}.  

 Optimized Selection: From the training data, we build 
probability distributions of P(θm|θ). Select θ=θm when 
m=argmaxm{P(θm|θ)}. 

Overall, the estimation of leg angle is a selection of the 
most probable observation value. We do not use Kalman filter 
or another data fusion approach because, for a single 
estimator, the performance decreases significantly when it is 
out of its “working region”. This can lead to poor angle 

estimates and false positive or false negative triggers when an 
estimator is not in its working region. In section C we will 
discuss three estimators and their respective regions. 

B. Background Subtraction 
Background subtraction is done first to filter the 

background and extract the depth image It and the 
corresponding point cloud of the player from the raw image I. 
In this step, we first detect the floor plane. Using the method 
in [11], we compute the corresponding camera-coordinate 
point p={x,y,z} for each pixel of the raw image by using the 
calibrated intrinsic parameters and generate a point cloud. 
Then we detect the ground plane using the RANSAC 
algorithm [12] on the generated point cloud. To speed up the 
convergence and reduce error, we manually add constraints 
on the input points. The points to be counted in the RANSAC 
will only be sampled from the game region G:{x,y,z: 
-1.5m<x<1.5m,0m<y<4m,z<0m}.  

 
Fig. 2. Preprocessing steps: 1) Raw depth image; 2) Extract floor plane 

and pixels in game region; 3) Extract player and transform points to floor 
coordinate reference 

Let f:{x,y,z: ax+by+cz+d=0} denote the formula of the 
floor plane. Then we extract the points which are above f and 
inside G and transform those from camera lens reference to 
floor reference. Because we only allow one player in the 
game from the extracted points, we then track the largest 
point cluster and consider it as the target player. The size of a 
point cluster is defined by its projection on the floor plane. 
For efficiency, we generate a 2D binary image from the 3D 
point cloud (Fig. 2). After getting the target player, the system 
discriminates the body direction. For estimating the leg angle, 
we only consider the condition in which the head is to the 
right and the feet are to the left in the camera view (Fig. 2), 
while the player may lie on either side when doing the 
exercise. We build a linear logistic classifier on It to decide 
the direction. If the head is to the left in the input image, the 
image is horizontally flipped and the x coordinate values of 
the point cloud as well. This discrimination only runs once at 
the beginning of the game. The system uses the same 
direction setting for subsequent frames.  

C. Three Leg Angle Estimators 
In order to build fast, accurate and robust game control 

input, we introduce three approaches for estimating leg angle. 
Each estimator has its own working region. The final result is 
a combination of these three approaches. 

Hough Leg Angle Estimator (HE) 

The Hough leg angle estimator (HE) uses the Hough 
transform method [13] to detect the most likely angles for two 
legs by voting. We first compute the centroid of the player 
body which is used as the hip position. Assuming xn is the x 
value of point n in all the N points belong to the player, the x 
coordinate of the body centroid is 𝑥𝑐 = 1 𝑁⁄ ∑ 𝑥𝑛

𝑁
𝑛=1 . Then 

we only consider the M points which have their x coordinate 
value Xm={xm:|xm-xc|<0.05m} so that we have the y and z 



  

coordinate values of the centroid as 𝑦𝑐 = 1 𝑀⁄ ∑ 𝑦𝑚
𝑀
𝑚=1,𝑥∈𝑋𝑚

 
and 𝑧𝑐 = 1 𝑀⁄ ∑ 𝑧𝑚

𝑀
𝑚=1,𝑥∈𝑋𝑚

. Next, we extract a point set 
Pb={pb:xPb<zc} which are the points of the lower body. In the 
voting step, we set the angle values from -90° to +90°. The 
angle αp and weight wp for a point pb vote is given by: 
𝛼𝑝 = tan−1(𝑧𝑝𝑏

− 𝑧𝑐 𝑥𝑝𝑏
− 𝑥𝑐)⁄  and wp=d((xpb,zpb),(xc,zc)) 

where d(p,q) is the Euclidean distance between points p and q. 
The weight of each angle is the accumulation of weights from 
points. Fig. 3(a) shows the result of HE and the weights 
histogram after voting. Then we detect the highest two cones 
and extract their centroids as angles of each leg with respect 
to a horizontal line through the centroid. The leg angle is the 
difference between these two angles. 

Body-End Leg Angle Estimator (BE) 

In the body-end leg angle estimator (BE), we estimate leg 
angle by detecting the two ends of the lower body, i.e., the 
player’s feet, and using the body centroid to get the leg angle. 
Several methods have been tested for detecting the feet; we 
ultimately chose an iterative approach to search for the end of 
a human body on the binary image. Starting from the body 
center ic=(uc,vc), two 3×3 patches Wup and Wdown are directed 
using two potential matrices Mup, Mdown to detect the upper 
and lower feet.  

𝑀𝑢𝑝 =
8 5 3
7 0 2
6 4 1

, 𝑀𝑑𝑜𝑤𝑛 =
5 4 1
7 0 2
8 6 3

 

Let ix(t) denote the pixel of the current center point of a 
patch 𝑊𝑥

𝑖𝑥(𝑡+1) The next step patch center ix(t+1) is selected 
from the eight neighbors of ix(t) by using Mx. The weight of 
selecting a neighbor is:  

𝑖𝑥(𝑡 + 1) = ∏ 𝑊𝑥
𝑖𝑥(𝑡+1) 

 𝑀𝑥(𝑖𝑥(𝑡 + 1) − 𝑖𝑥(𝑡)).  (1) 

We move the patch to the pixel with the highest weight. 
A potential matrix Mx keeps the patch moving inside the 
white pixels of It and drives it towards the x direction of the 
body end. The iteration stops when d(i(t’),i(t’-φ))<β. Here d 
is the Euclidean distance between two pixels, φ=10 and β=1 
which means that the iterations stop when the patch cannot 
move further (Fig. 3(b)). Assuming pi(t’)=(xi(t’),yi(t’),zi(t’)) is the 
point of the end patch center pixel i(t), the leg angle of the 
corresponding end detected is: 

𝜃𝑥 = tan−1
𝑧

𝑖(𝑡′)−𝑧𝑐

𝑥𝑖(𝑡′)−𝑥𝑐
   (2) 

Then the leg angle is 𝜃𝐵𝐸 = 𝜃𝑢𝑝 − 𝜃𝑑𝑜𝑤𝑛. 

LBP-Foot Leg Angle Estimator (LE) 

We estimate the leg angle by detecting each foot in the 
LBP-Foot leg angle estimator (LE). Local-binary-patterns 
(LBP) offer an approach for generating features very quickly 
and are often used for classification in computer vision [14]. 
Here, we generate LBP features over a 32×32 patch on the 
binary image It. We train a foot detector using 100 patches 
which are randomly chosen from a 20s Kinect video of the hip 
abduction exercise. When running the detection, we use the 
32×32 foot detector to scan the body image It through the 
region Rs{u < uc, v < vc} by a step length of 4 by 4. Then we 
select two patches which have the highest response as the 
upper foot and the lower foot (Fig. 3(c)). The overlapping 

patches are removed from the result and the final results are 
the raised foot and the foot on the floor. To locate foot 
position, we compute the mean of the point coordinates for all 
the white pixels in a patch as 
pfeet={xfeet,yfeet,zfeet}={mean(Xwhite),mean(Ywhite),mean(Zwhite)}. 
Then the leg angle is:  

𝜃𝐿𝐸 = tan−1
𝑧𝑓𝑒𝑒𝑡

𝑢𝑝
−𝑧𝑐

𝑥
𝑓𝑒𝑒𝑡
𝑢𝑝

−𝑥𝑐
− tan−1 𝑧𝑓𝑒𝑒𝑡

𝑑𝑜𝑤𝑛−𝑧𝑐

𝑥𝑓𝑒𝑒𝑡
𝑑𝑜𝑤𝑛−𝑥𝑐

   (3) 

D. Final Leg Angle Estimate 

During testing each angle estimator, we observe that the 
deviation of an estimator can stay very small inside a region 
and increase very fast when the leg angle moves out of this 
region. Fortunately, the combined “working region” of the 
three estimators covers the entire angle space from 0° to 90° 
so that there is at least one estimator that works well 
throughout this range. Therefore, we draw the distributions of 
leg angle as {P(θHD|θ),P(θBD|θ),P(θFD|θ)} for each estimator 
on different angles. The predicted angle θ(t) at time t is:  

𝜃(𝑡) = 𝜃𝑥(𝑡) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥∈{𝐻𝐷,𝐵𝐷,𝐹𝐷}{𝑃(𝜃𝑥(𝑡)|𝜃)} (4) 

In our program, we let P(θX|θ)≈P(θX|θμ) because we do 
not know P(θX|θ) so that at time t we use 𝜃𝜇(𝑡) = 𝜃(𝑡 − 1) +

(𝜃(𝑡 − 1) − 𝜃(𝑡 − 2)) which yields a good estimation of the 
real leg angle. 

       
                           (a)                            (b)                             (c) 

Fig. 3 (a) Hough leg angle estimator (HE); (b) Body-end leg angle 
estimator (BE); (c) LBP-Foot leg angle estimator (LE)  

III. FEASIBILITY STUDY 

As a precursor to a human subjects experiment with 
athletes, a feasibility study was conducted to assess the leg 
angle estimation and to investigate the leg angle as a control 
mechanism in the game. To test the leg angle estimation, six 
athletes performed 18 to 24 leg lifts, yielding a total of 132 
lifts following Institutional Review Board. We used a 
marker-based Vicon system to capture the ground truth of the 
leg angle. To collect Vicon data, we attached four markers to 
subjects. Two of them were placed at the anterior aspect of 
the ankles; the other two were placed at the anterior hip. The 
four markers draw the shape of two legs on each person. The 
Kinect data and Vicon data were recorded simultaneously 
during the test. Because the Vicon system captures data at a 
much higher frequency than the Kinect, we sample the Vicon 
data at the Kinect capture moment to better compare with the 
Kinect data. To evaluate the system, we logged the leg angle 
result obtained separately by each estimator and the angle 
captured by the combined estimation. Table I shows the 
results of the Kinect against the Vicon reference angles. 

TABLE I. Performance of Kinect against Vicon 

 HD BD FD Combined 
Error([0, 90]) (deg) 6.1±3.1 6.5±4.7 6.9±5.6 5.5±3.62 

Working Region 
(WR) (deg) [0, 20] [20, 45] [45, 90] [0, 90] 

Error (WR) (deg) 7.2±2.8 5.7±4.2 3.0±2.4 N/A 



  

There are many factors affecting the error of the leg angle 
estimation. In addition to estimation error, the time difference 
between the Kinect and Vicon data captures can introduce 
errors. Because the Kinect and Vicon systems capture data at 
different frequencies, it is not possible to consistently 
compare angles captured at exactly the same time. Fig. 4(a) 
shows leg angle estimates produced by the two systems. As a 
result, we show results from another test, in which the jump 
trigger times are compared using the Kinect and Vicon leg 
angle estimates. It can be noticed that Fig. 4(a) shows 
oscillation when the leg angle is approaching zero degrees. 
This is because the error of the estimators increases at the 
region around 0o. However, the error will not affect the game 
control if we set the trigger angle from 15° to 55° which is 
consider as the working region of the combined leg angle 
estimator. Fig. 4(b) shows the average difference between the 
Kinect and Vicon as a function of the trigger angle from 15° 
to 55°. The average across all trigger angles is about 0.05s 
which shows that the Kinect-based leg angle game input 
system provides a real-time and accurate response to the hip 
abduction exercise motion. 

 
                              (a)                                               (b) 

Fig. 4. (a) Time-Leg Angle curves: dashed line – Kinect; solid line – 
Vicon. (b) Trigger time difference between Kinect and Vicon. 

To further test the performance of the leg angle estimator, 
we integrated our leg angle estimation control into the 
“Happy Tiger” game and ran end-to-end tests, using an HP 
envy laptop (CPU: 2.2GHz, RAM: 4G) with the Windows 8.1 
operating system. The leg angle estimator runs in a different 
thread from the game scene and takes 7ms for image 
processing. The game scene ran at 30 frames per second 
which is a standard speed as a video game. Tests were 
performed using each angle estimator individually and the 
combined estimator. The number of lifts and triggered jumps 
by individual estimators and the combined angle estimator 
are listed in Table II. Using the combined leg angle estimator, 
the success rate of triggering is 99%. 

TABLE II. Performance of Using Leg Angle Estimators in the Game 

 # of Lifts # of Jumps Success Rate 
Combined 203 201 99.0% 

HD 40 30 97.5% 
BD 40 36 90.0% 
FD 40 35 87.5% 

IV. CONCLUSION 

In this paper, we tested the feasibility of a Kinect-based 
computer game for a side-lying hip abduction exercise. We 
focused on the game control, which used Kinect depth images 
to estimate the angle between two legs. The combination of 
three estimators remarkably reduced the error and improved 
the success rate on triggering jumps. Game testing showed 
that our system is fast, accurate, robust and works well for 
game control. The results illustrate that it is feasible to use the 

Kinect for hip strengthening exercises, targeting individuals 
at risk for ACL injury. A Kinect-based exercise game has 
advantages. First, it shares the same game platform as other 
Kinect-based video games. Second, it is convenient for 
players to start and play the game, not relying on wearable 
markers or wearable sensors. This paper shows the potential 
for the Kinect to be an interactive medium for floor-based 
exercises, targeting injury prevention. In future work, we will 
conduct studies with athletes. We plan to extend the system to 
incorporate other exercises and review feedback from users. 
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