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Abstract—Linguistic summaries provide a promise for 

extracting useful information from large datasets and present 

them in the form of natural language. Their applications can be 

found in various disciplines such as eldercare, financial time series 

etc. In this work we focus on linguistic protoform summaries and 

point out at some problems associated with the truth value 

computation methods present in literature. We develop a 

technique which produces more intuitive truth values for three 

different kinds of linguistic protoform summaries and illustrate 

this with help of some examples. Moreover, we show through a 

mathematical proof that our method is very robust and the truth 

values always follow the semantic order of the language they are 

representing. 
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I.  INTRODUCTION  

As the amount of data increases, converting it into useful 
information becomes an increasing difficult problem. This has 
been widely discussed in the data science community under the 
name of big data which is said to be comprised of the four V’s – 
Volume, Variety, Velocity and Veracity [3]. Each of these V’s 
pose a unique set of problems in terms of understanding the 
information content. For instance, a widely used approach in 
order to get to know the data well is to visualize it. However, as 
the variety/dimensionality of the data increases visualization 
becomes more difficult. Another technique is to compute some 
statistical metrics to get a big picture of the nature of the data. 
Though the statistical metrics like mean, median etc. provides 
some insight into the information content, they might neglect a 
lot of intrinsic details that may be very important. Moreover, it 
may be difficult for an untrained eye to analyze these metrics to 
keep up with the data. Linguistc summaries offer a human-
centric method to compress and explain large amounts of raw 
data. For example, [4] discuss the implications of vast amounts 
of data generated in Neonatal Intensive Care Units and how 
textual summaries can help the doctors, nurses and caretakers of 
infants make better use of it. Linguistic summaries hold a 
promise of providing a solution to these problems by describing 
the information content in human readable natural language. 
Along with the capability of describing intricate information in 
heterogeneous records, it naturally makes it easy for the people 
with different background to analyze it, for example in case of 
monitoring sensor output from the home of elderly residents [5].  

A number of ways to generate textual summaries of numeric 
data have been presented in the past. Two prominent approaches 

are the statistical rule based methods [4, 6] and fuzzy logic 
techniques [1, 2, 5, 7-13]. In [14] the authors point that statistical 
rule based techniques produce more sophisticated and longer 
text summaries of data, while are not so flexible in data 
processing due to the hard coding of the data selection rules as 
compared to the fuzzy logic techniques  

Largely, three types of Linguistic Protoform Summaries 
(LPS) have been talked about in the literature, with each 
focusing on a different property of the data. They can be 
exemplified by Many balls are big, Some balls are light and 
small and Few of the red balls are small. We call these simple 
protoform, protoform 2 and protoform 3 summaries, 
respectively. For each summary one or more metrics are 
computed indicating its validity with respect to the underlying 
data. In this work we focus on computation of the metric 
associated with these three types of summaries.  

The summaries of the form Many balls are big were 
introduced by Yager [1] as a way to summarize both numeric 
and non-numeric data. Yager’s LPS (and our work) basically is 
comprised of three terms: a summarizer (e.g., big, small, red 
etc), a quantifier (e.g., Few, Some, Many etc) and a truth value. 
Since then this idea has been taken forward both in terms of new 
protoforms and the way the truth value of a summary is 
computed. The quantifier forms an integral part of the 
summaries describing the presence of one or more attributes of 
data. Historically, a lot of focus has been put on evaluating the 
sentences based on the type of quantifier used. Generally, they 
can be used to describe precise information (such as all, none 
etc.) or can be of imprecise nature (such as Few, Some etc.). The 
use of fuzzy sets in order to model quantifiers conveying non-
crisp information seems to be adequate. Fuzzy quantification is 
a widely studied topic with many approaches to evaluate the 
summaries involving fuzzy quantifiers. Authors in [15] provide 
an in depth analysis of the different quantification techniques. 
This work builds on a methodology using the Sugeno integral 
[16]. In the following we present an overview of the 
development of different aspects of LPS.  

In [10] the authors modified the structure of protoforms to 
characterize different aspects of time series data, namely, how 
long certain trends remain constant, and how much and how fast 
they change. They fused the information using the Sugeno 
Integral [16] to compute truth values of these protoforms. Then 
in [9], they introduced a metric called degree of focus to reject 
summaries which do not add much information. An approach to 
compare two time series was proposed in [8, 17]. They generated 



LPS to depict the changes in two time series at various levels. In 
[5] motion and restlessness data for an elderly participant is 
analyzed using LPS. Then in [18] a distance metric for a space 
of linguistic summaries was developed. This allowed the authors 
to compute distances between groups of linguistic summaries in 
the eldercare sensor data. The summaries could then be clustered 
and the clusters eventually represented by Linguistic Medoid 
Prototypes [13]. Conceptually, the goal of that work was to 
utilize LPS as a compact but understandable feature set for 
heterogeneous data streams, both for the purpose of 
communication and automatic detection of anomalies [19]. A 
different take to produce summaries at various granularities was 
proposed in [20] with a method similar to Yager [1] to compute 
truth values. Reference [21] focusses on summaries of the form 
Y’s are P and R, e.g., Employees are well paid and young. They 
call the metric associated with the summaries as the degree of 
truth, which indicates the percentage of objects satisfying all of 
the given attributes. The method to compute the degree of truth 
is somewhat similar to [10], however their main concern is 
agreement of different attributes rather than the use of 
quantifiers. In [22, 23], genetic algorithms are used to search for 
interesting summaries of data. Summaries with features such as 
high truth value, compactness and uniqueness are deemed as 
interesting. 

The authors of [2] have shown that the Zadeh calculus for 
defining truth values, (defined and analyzed in Section II.B), can 
produce very non-intuitive values [2]. In that paper, a method to 
address the main problem was introduced, but issues with 
respect to a natural interpretation of truth values still remained.  
We build on it to produce truth values which are more intuitive 
with respect to the semantic meaning of the quantifiers. The truth 
value of an LPS represents the amount of information it contains 
or how well it represents the underlying data. In Section II we 
discuss few of the techniques to compute truth values that are 
relevant to our work. Section III presents our approach with 
focus on its benefits accompanied by a theorem proving the 
robustness of our method. In Section IV, we extend the proposed 
method for summaries with extended protoforms, e.g., Few of 
the balls are red and small, Few of the red balls are small. 

II. BACKGROUND 

LPS are short natural language sentences whose form is 
prescribed depending on the application and the nature of data 
to be summarized. A general simple form of linguistic protoform 
summary is 

A y’s are P 

for example, Few balls are big. Here, A is the linguistic 
quantifier which is selected according to the quantity of the 
objects being summarized, like most, many, few, some etc. The 
variable y represents the type of the objects, like balls, days etc. 
P is the summarizer, encapsulating a feature, like big, small, tall 
etc. The truth value T is calculated for every summary 
representing its informativeness. There are several methods to 
compute truth values of which we describe two that are relevant 
to this work. The linguistic variables A and P are fuzzy sets over 
suitable domains and are represented by membership functions 
defined as normal, convex L-R fuzzy numbers [24] as shown in 
equation (1). 
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Where, L(x) and R(x) are monotonically non-decreasing shape 
functions with; L(0) = R(0) = 0, L(1) = R(1) = 1. While L-R fuzzy 
numbers are general, many computational problems use either 
trapezoid functions or triangle functions (b = c) where L and R 
are linear.  It may be the case that the value of the function is 1 
at the left or right endpoint of the domain (for e.g., Almost None 
and Many, respectively in Figure 1). In such cases, by definition,
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note that for the case of quantifiers, we only concentrate on the 
ones defined within the domain [0, 1]. However, there is no such 
restriction for summarizers. 

A. Semantically Ordered Quantifiers 

Words in languages have semantics associated with them. 
For instance, given a bag containing a number of balls of 
different sizes, the sentence Few balls are big corresponds to 
fewer number of big balls in the bag as compared to the sentence 
Some balls are big. In line with this, the membership functions 
of the linguistic quantifiers (Few and Some, respectively) should 
also follow the same semantic order. We define semantically 
ordered quantifiers to follow this reasoning. To fix ideas, 
suppose that A(x) and B(x) are the membership functions of the 
quantifiers like Few and Some in the above two sentences (as 
defined in equation (2) and (3) respectively). 
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Then we call these membership functions semantically 
ordered if,  

],[)()( baxxBxA  , and ],[)()( srxxAxB   



Primarily, we avoid the cases where the functions overlap in 
an ambiguous fashion. The membership functions of the 
quantifiers shown in Figure 1 are semantically ordered in the 
following order: Almost None, Few, Some, Many. Trapezoidal 
functions are usually denoted as Trap(a,b,c,d). 

B. Truth value computation using Zadeh’s calculus of 

quantified propositions [25] 

The first and still popular method used to compute truth 
value of LPS was introduced by Yager in [1] which employs 
Zadeh’s calculus of linguistically quantified propositions [25]. It 
is given by equation (4).  
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where A(x) and P(x) are the membership functions of the 
quantifier and summarizer respectively, yi is the ith  object in the 
data to be summarized, with N total number of objects. When 
the data is relatively crisp, this method produces intuitively 
correct truth values. However, due to the use of averaging 
operator, a discrepancy arises in case of fuzzier datasets. We 
illustrate this with the help of some examples. 

Example 1 

 In this example we consider a scenario in which we would 
like to produce linguistic summaries of bags containing 10 balls 
of various sizes. We also assume that a separate process provides 
the summarizer value (bigness) of each ball varying from 0 to 1. 
Since the validity of LPS can be very subjective, the data in 
Table 1 is tailored to highlight the problems mentioned above.   

 We define four semantically ordered quantifiers as shown in 
Figure 1 and compute truth values of the four sentences – Almost 
None of the balls are big, Few balls are big, Some balls are big 
and Many balls are big. Note that the membership functions of 
these quantifiers are of the form presented in equation (1).
 According to intuition, for bag 1, Many balls are big seems 
to be the best choice, while for bag 2 and 3, it is safe to say that 
out of the four summaries, Almost None of the balls are big best 
represents the data, and it should have the highest truth value. 
Because of the fuzziness of the data, the summaries which do 
not characterize the data best may have a truth value greater than 
0. However, their truth values are expected to follow the 
semantic order of the quantifiers.   

 Table 2 displays the truth values produced using equation (4) 
for the data shown in Table 1. The truth value computed for 
summaries corresponding to bag 1 seems to be in line with the 
data. However, this is not the case for bags 2 and 3. First, even 
though in bag 2 none of the balls are really big, the truth value 
of Few balls are big is calculated as maximum. Second, in bag 
3, the truth value of Some balls are big is computed to be 
maximum which does not correspond to the fact that only one 
ball is really big. As noted in [2], this discrepancy is due to the 
averaging of memberships in the formula, which works better 
with monotonically non-decreasing quantifiers (such as Many)  
as compared to others.  

C. Truth value computation using method presented in [2] 

The problem associated with averaging of the memberships 
highlighted above was addressed recently by [2]. The reasoning 
behind their technique is that while summarizing a set of objects 
humans reject the objects with low memberships. To this end, 
they use the discrete form of Sugeno Integral [16] to compute 
the truth value of LPS of the form A y’s are P, as shown in 
equation (5). 
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where, ̂  is the minimum operator,
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the proportion of objects whose membership in P(x) is greater 

than or equal to ,  .  denotes the  cardinality of a set and A(x) 

is a normal, convex and monotonically non-decreasing 

membership function of the quantifier A . Specifically, equation 

(5) is the Sugeno fuzzy integral with fuzzy measure defined by 

A(x). This formulation satisfies the definition of a fuzzy 

measure as long as A(x) is a monotonically non-decreasing 

function. Hence, as shown, it is not suitable to determine the 

truth values, say, for propositions Almost None, Few and Some 

in Figure 1. In the following we explain the procedure to 

calculate the truth value when the quantifiers are not 

monotonically non-decreasing. 

Suppose we have quantifier A, with membership function 

A(x) of the form shown in equation (1). In order to compute the 

truth value of the summary A y’s are P, A(x) is first split into 

A1(x) and A2(x). The function A1(x) is monotonically non-

decreasing while A2(x) is a monotonically non-increasing 

function. In order to use equation (5) to compute truth value of 

a summary involving A2, its complement, )(2 xA is defined as 

shown in equation (7). 

  Bigness 

Bag 1 0.9 0.9 0.9 0.7 0.7 0.7 0.7 0.1 0.1 0.1 

Bag 2 0.4 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 

Bag 3 0.9 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 

 

Table 1: Bigness of each ball 

 
Almost 

None 
Few Some Many 

Bag 1 0.00 0.00 0.20 0.80 

Bag 2 0.00 1.00 0.00 0.00 

Bag 3 0.00 0.40 0.60 0.00 

 

Table 2: Truth values using [1], of LPS associated with 

example 1 

Figure 1: Membership functions of Quantifiers  
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Then, the truth value of A y’s are P is given as 

        )'()'()'( 21 ParesyATParesyATParesyAT        (8) 

 

For example, if the function A(x) is of form Trap(a,b,c,d), then 

it is split as A1(x)= Trap(a,b,1,1) and )(2 xA = Trap(c,d,1,1), as 

illustrated in Figure 2. Note that for quantifiers with monotonic 
non-increasing membership functions such as Almost none in 
Figure 1, the function A1(x) is always 1, hence the truth value of 
A1 y’s are P in this case is also 1. Therefore, the truth value of   
A y’s are P, is computed as 

)'(1)'( 2 ParesyATParesyAT   

Also, for monotonic non-decreasing quantifiers like Many in 
Figure 1, the function A2(x) is always 1. Hence, 

T(A y’s are P) = T(A1 y’s are P). 

 Table 3 shows the truth values of the summaries of the form 
A y’s are big computed by this technique with the quantifiers 
shown in Figure 1. It can be observed that the problem 
mentioned with the method of [1] does not exist here, and the 
truth value computed for Almost None of the balls are big and 
Few balls are big are more intuitive; Almost None being the one 
with highest truth value for bag 2 and 3. However, the truth value 
for Many balls are big is greater than that of Few balls are big 
and Some balls are big in both of these cases, which is counter 
intuitive according to the data and the semantic order of the 
quantifiers. Moreover, in bag 1 , even though the truth value of 
Many balls are big is correctly computed to be the highest, that 

of Few balls are big and Almost None of the balls are big being 
greater than Some balls are big, is again, not intuitive. We 
address this problem in the next section.  

III. PROPOSED METHOD 

 The importance of our approach is based on the fact that only 
one summary may not be sufficient to completely describe a 
dataset. For example, in [13] all LPS above a threshold were 
considered to compute linguistic prototypes from a collection of 
summaries. In such cases, semantically unordered truth values 
may result in anomalous output. Hence, we lay stress on a 
technique in which truth values follows the semantic order of the 
quantifiers. To this end, we modify the method in [2] to produce 
more intuitive truth values.    
 For quantifiers A, whose membership function A(x) are of 
the form defined in equation (1), similar to [2], we split them up 
into A1(x) and A2(x) as shown in equation (6). Then, the truth 
value of A y’s are P is given by: 

       )'()'()'( 21 ParesyATParesyATParesyAT        (9) 

where, A1(x) and A2(x) are defined as described in Section II.C 
and the truth values are computed using equation (5). Note that 

T(A2 y’s are P) is evaluated by defining )(2 xA  as shown in 

equation (7). 
 Table 4 shows the truth value of the bags of balls in           
Table 1 using proposed method. For bags 2 and 3, the truth value 
for Almost None of the balls are big is highest and it varies 
gradually from Few balls are big to Many balls are big. 
Similarly, for bag 1, the truth value is highest for Many balls are 
big and it varies intuitively from Some balls are big to Almost 
none of the balls are big. This evidence suggests that the 
proposed method does not suffer from the discrepancies 
observed in [1] and [2]. We now show that the truth values 
computed by this method always follow the semantic order of 
the quantifiers.  

A. Lemma 1 

For any summarizer, P, if there are two monotonic quantifiers A 
and B such that 

Figure 2: Illustration of how membership functions are split in order to 

compute truth values 

 
Almost 

None 
Few Some Many 

Bag 1 0.10 0.20 0.00 0.70 

Bag 2 0.70 0.10 0.10 0.20 

Bag 3 0.70 0.20 0.00 0.30 

 

Table 3: Truth values using [2], of LPS 

associated with example 1 

 
Almost 

None 
Few Some Many 

Bag 1 0.10 0.30 0.30 0.70 

Bag 2 0.70 0.40 0.30 0.20 

Bag 3 0.70 0.50 0.30 0.30 

 

Table 4: Truth value computation using 

proposed method, of LPS associated with 

example 1 
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Based on this Lemma, we can prove the main result. 

B. Theorem 1 

The truth values computed by the proposed method follows the 

semantic order of the quantifiers. That is, suppose we have three 

semantically ordered quantifiers A, B and C with their 

membership functions A(x), B(x) and C(x) respectively, each of 

the form defined in equation (1), and suppose that 

 

)'()'( ParesyBTParesyAT  . Then 
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Proof: 

Let, AT = Truth value of the statement, A y’s are P, where A(x) 

is the membership function of the quantifier A, along with 

similar notations for quantifiers B and C. Assume that the 

quantifiers A, B and C are semantically ordered. To compute the 

truth value as shown in equation (8), the quantifiers are 

transformed to monotonic functions as shown in equation (6). 

It is straight forward to see that 

)()()( 111 xCxBxA  , and           (10) 

)()()( 222 xAxBxC              (11) 

Now using Lemma 1 and equations (10) and (11),    

111 CBA TTT               (12) 

222 ABC TTT               (13) 

 

It is given that BA TT              (14) 

We start by computing BT , 

Case 1, 
1AA TT  , that is, 

12 AA TT   

From equation (12) and (13) we have 

11 BA TT  and 
22 AB TT  . Hence, 

1122 BAAB TTTT  , and so 

121
),( BBBB TTTminT   

Case 2, 
2AA TT    

Suppose that 
2BB TT  , 

According to equation (13),
22 AB TT  , which would imply 

that AB TT  . This contradicts the hypothesis of the theorem, 

restated in equation (14). Hence, if the given condition holds 

then irrespective of which component defines the truth value 

,AT  

121
),min( BBBB TTTT              (15) 

Similarly, to compute CT , from equations (12), (13) and (15) 

respectively we have, 

122211
, BBBCCB TTandTTTT  . Thus, 

1122 CBBC TTTT  , which implies that 

121
),min( CCCC TTTT  . 

Now, since 
11 CB TT  and that 

1BB TT  and 
1CC TT  , we 

conclude that,  

CB TT  . That is, )'()'( ParesyCTParesyBT   and the 

proof is complete. 

From this theorem, it’s clear that the truth values will follow the 

semantic ordering in all directions along with the quantifiers.  

IV. CASE OF EXTENDED PROTOFORMS 

Linguistic summaries with simple protoforms: A y’s are P 

described above have been extended to the protoforms:                

A y’s are P and Q and A R y’s are P in the past. They can be 

exemplified by Some of the balls are big and heavy and Some 

of the big balls are heavy, respectively. As a naming 



convention, we call summaries of the form A y’s are P and Q 

as protoform 2 summaries and A R y’s are P as protoform 3 

summaries. Both of these extended summaries encapsulate 

more than one feature of data at the same time, hence containing 

richer information as compared to simple protoforms  

Along with the truth value, the protoform 3 summaries are 

accompanied by another metric called the degree of focus                    

[9]. The degree of focus conveys information about how 

applicable is the summary with respect to R and also enables to 

discard non-promising summaries. Similar to the case of simple 

protoforms, we observe a discrepancy when the truth values are 

computed using Zadeh calculus of linguistically quantified 

propositions [25] and extend our method to produce more 

intuitive truth values. 

A. Truth value computation using Zadeh calculus of 

linguistically quantified propositions 

Equation (16) and (17) show the method used to compute 

the truth values of extended protoforms using Zadeh calculus 

with the formula for degree of focus shown in equation (18)  
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where, similar to the simple protforms, P(x) is the membership 

function of the summarizer, A(x) is the membership function of 

the quantifier and N the size of the set  Niyi ...2,1|  . For 

protoform 3 summaries, R is called the qualifier with its 

membership function represented by R(x) and for the case of 

protoform 2 summaries, Q is another summarizer along with P. 

Also, it is worth noting that for protoform 2 summaries, the 

degree of focus is not applicable since it does not add any 

information. 

In the following, we present some examples to illustrate the 

discrepancy when the truth values are computed by equation 

(16) and (17) and show that our method solves the mentioned 

problem. Table 5 shows the bigness and heaviness of 4 bags of 

balls containing 10 balls each. We wish to compute truth values 

of the extended protoform summaries of the form: A of the balls 

are big and heavy and A of the big balls are heavy, A being each 

of the quantifiers, Almost None, Few, Some and Many as 

defined in Figure 1 in Section II. 

From the data presented in the Table 5, intuitively, bag 1 is 

best described by Few of the big balls are heavy and Few of the 

balls are big and heavy while bag 2 by Almost None of the big 

balls are heavy and Almost none of the balls are big  and heavy. 

To point out that both of the extended summaries conveys 

similar but different type of information about the data, we 

designed data for bag 3 and 4, such that bag 3 is best represented 

by Almost None of the balls are big and heavy (since there is 

only one big ball big that is heavy) and Few of the big balls are 

heavy (out of four really big balls, one is heavy). Similarly, for 

bag 4, the summary Many of the big balls are heavy describes 

it well, as all the four really big balls have higher memberships 

in heaviness. However, due to the fact only four balls are really 

big and heavy, the summary Some of the balls are big and heavy 

is equally true but conveys different information.  

Tables 6 and 7 shows the truth values computed using 

equation (16) and (17), respectively, with the degree of focus 

shown for protoform 3 summaries in the last column of Table 

7. We observe that for bags 1, 3 and 4, this method computes 

the highest truth values for both the protoform 2 and protoform 

3 summaries that best represents the data. However, in case of 

bag 2, the truth value of Few of the big balls are heavy and Few 

of the balls are big and heavy being highest does not look 

intuitive, since none of the balls are really heavy (their 

membership being 0.3). Similarly, for bag 4, even though the 

truth value of Some of the balls are big and heavy is highest, it 

being very close to Few of the balls are big and heavy is non 

intuitive. This discrepancy arises due to the use of average 

operator similar to the case of simple protoforms. We also note, 

 
Almost 

None 
Few Some Many 

Bag 1 0.00 1.00 0.00 0.00 

Bag 2 0.50 0.75 0.00 0.00 

Bag 3 1.00 0.45 0.00 0.00 

Bag 4 0.00 0.40 0.60 0.00 

 

 

Table 6: Truth values of summaries of the form Almost none of the 

balls are big and heavy, Few of the balls are big and heavy etc. 
computed using the Zadeh calculus of quantified propositions      

  
Almost 

None Few Some Many dFoc 

Bag 1 0.00 0.70 0.30 0.00 0.60 

Bag 2 0.00 1.00 0.00 0.00 0.50 

Bag 3 0.00 1.00 0.00 0.00 0.33 

Bag 4 0.00 0.00 0.00 1.00 0.54 

 

 

Table 7: Truth values and degree of focus of summaries of the form 
Almost none of the big balls are heavy, Few of the big balls are 

heavy etc. computed using the Zadeh calculus of quantified 
propositions      

 

Bag1 
Bigness 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 

Heaviness 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Bag2 
Bigness 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 

Heaviness 0.3 0.3 0.3 0.3 0.3 0.0 0.0 0.0 0.0 0.0 

Bag3 
Bigness 0.9 0.8 0.8 0.8 0.0 0.0 0.0 0.0 0.0 0.0 

Heaviness 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Bag4 
Bigness 0.9 0.9 0.9 0.9 0.3 0.3 0.3 0.3 0.3 0.3 

Heaviness 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 

 

 

Table 5: Bigness and Heaviness of 4 bags of balls 



none of the summaries can be rejected on the basis of the degree 

of focus, since it is fairly high for all of the 4 bags.  

B. Proposed method adapted to the extended protoforms 

We modify the method proposed earlier in this paper to 

compute truth values of the extended summaries with non-

decreasing quantifiers, as shown in equation (19) and (20). 
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We note that for cases where 0R , the truth value of the 

summary for that  cut is set to 0, since there are no objects to 

be summarized. 

To elaborate, for protoform 2 summaries, we modify 

equation (5) by implementing the ‘and’ between summarizers 

with a minimum operator. That is, in equation (19), for each 

object we take the smaller of the memberships in P and Q, and 

then compute the truth value of this new set.  

For the case of protoform 3 summaries, we take beta cuts of 

the qualifier data from 0 to the highest membership of the 

objects in the qualifier R (i.e., max(R(yi))). For each of the 

objects falling in the current beta cut, we follow the procedure 

for the simple protoforms. The intuition behind this is that when 

computing truth values of summaries like Some of the big balls 

are heavy, we should only focus on the balls that are big under 

certain condition, which is the beta cut in equation (20). Next, 

as shown in equation (21), the degree of focus is computed for 

the beta cut that produces this truth value, that is, we compute 

the proportion of objects that have the memberships in the 

qualifier, R, greater than the value of beta that resulted in the 

truth value in equation (20). This results in a degree of focus for 

each summary, unlike the Zadeh calculus method, where there 

is one degree of focus for each dataset to be summarized. Also, 

for summaries with zero truth value, the degree of focus is not 

applicable since it does not provide any information. 

For quantifiers whose membership functions are not 

monotonic non-decreasing, similar to the simple protoforms, 

we split the quantifiers as shown in section II.C and use 

equation (8) to compute the final truth value. 

Tables 8 and 9 shows the truth value of the summaries of 

four bags shown in Table 5, computed using equation (19) and 

(20) respectively. For bag 2, Almost none of the big balls are 

heavy has the highest truth value with the same degree of focus 

for all four summaries. In the case of bag 4, the truth value of 

Many of the big balls are heavy is computed to be highest with 

a degree of focus of 0.36. For this bag, Some of the big balls are 

heavy has a high degree of focus, but it can be rejected on the 

basis of a very low truth value. It is also worth noting that for 

bag 3, the truth value of Many of the big balls are heavy is 

computed to be maximum, however, with a very low degree of 

focus. This is due to the fact that the only really heavy ball has 

bigness of 0.9. Hence, this summary can be interpreted as Many 

balls with bigness above 0.9 are heavy (which seems to be true). 

But we can discard this summary on the grounds of having very 

small degree of focus. For the same bag, the truth value of Few 

of the big balls are heavy is computed to be 0.8 with a 

comparatively higher degree of focus of 0.33, which seems to 

be the correct representation of the balls in bag 3.  

For the case of protoform 2 summaries, our method 

produces expected truth values for all four of the bags. Unlike 

the method involving the Zadeh calculus, we end up with 

Almost None of the balls are big and heavy as the summary with 

highest truth value for bag 2 which is in correspondence with 

the data. Also, for bag 4, Some of the balls are big and heavy 

has a very high truth value in comparison to Few of the balls 

are big and heavy which looks more correct intuitively. 

 
Almost 

None 
Few Some Many 

Bag 1 0.00 1.00 0.00 0.00 

Bag 2 0.70 0.30 0.30 0.00 

Bag 3 1.00 0.50 0.00 0.00 

Bag 4 0.10 0.10 0.90 0.00 

 

Table 8: Truth values of summaries of the form Almost none 

of the balls are big and heavy, Few of the balls are big and 
heavy etc. computed using proposed method     

  
Almost 

None 
Few Some Many 

T dFoc T dFoc T dFoc T dFoc 

Bag 1 0.00 NA 0.70 0.60 0.30 0.60 0.00 NA 

Bag 2 0.70 0.50 0.30 0.50 0.30 0.50 0.30 0.50 

Bag 3 0.00 NA 0.80 0.33 0.00 NA 0.90 0.09 

Bag 4 0.00 NA 0.00 NA 0.20 0.54 0.90 0.36 

 

Table 9: Truth values and degree of focus of summaries of the 

form Almost none of the big balls are heavy, Few of the big balls 
are heavy etc. computed using proposed method 



V. CONCLUSIONS 

In this work we identified some discrepancies in previous 

techniques to compute truth values of linguistic protoform 

summaries of the form Few balls are big, Few of the balls are 

big and heavy and Few of the big balls are heavy. We solve the 

problems associated with these methods and show that our 

solution computes intuitive truth values of linguistic summaries 

with both simple and extended protoforms. Moreover, we 

provide a proof to show that our method always produces truth 

values according to the semantic order of language it represents. 

Linguistic protoform summaries have been used in numerous 

applications in the past. A fresh look at them with our new 

method might provide important observations.   
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